Metamath Proof Explorer


Theorem bcval

Description: Value of the binomial coefficient, N choose K . Definition of binomial coefficient in Gleason p. 295. As suggested by Gleason, we define it to be 0 when 0 <_ K <_ N does not hold. See bcval2 for the value in the standard domain. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion bcval N0K(NK)=ifK0NN!NK!K!0

Proof

Step Hyp Ref Expression
1 oveq2 n=N0n=0N
2 1 eleq2d n=Nk0nk0N
3 fveq2 n=Nn!=N!
4 fvoveq1 n=Nnk!=Nk!
5 4 oveq1d n=Nnk!k!=Nk!k!
6 3 5 oveq12d n=Nn!nk!k!=N!Nk!k!
7 2 6 ifbieq1d n=Nifk0nn!nk!k!0=ifk0NN!Nk!k!0
8 eleq1 k=Kk0NK0N
9 oveq2 k=KNk=NK
10 9 fveq2d k=KNk!=NK!
11 fveq2 k=Kk!=K!
12 10 11 oveq12d k=KNk!k!=NK!K!
13 12 oveq2d k=KN!Nk!k!=N!NK!K!
14 8 13 ifbieq1d k=Kifk0NN!Nk!k!0=ifK0NN!NK!K!0
15 df-bc (..)=n0,kifk0nn!nk!k!0
16 ovex N!NK!K!V
17 c0ex 0V
18 16 17 ifex ifK0NN!NK!K!0V
19 7 14 15 18 ovmpo N0K(NK)=ifK0NN!NK!K!0