| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifn0.1 |  |-  ( ph -> A C_ CC ) | 
						
							| 2 |  | fwddifn0.2 |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | fwddifn0.3 |  |-  ( ph -> X e. A ) | 
						
							| 4 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 5 | 4 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 6 | 1 3 | sseldd |  |-  ( ph -> X e. CC ) | 
						
							| 7 |  | 0z |  |-  0 e. ZZ | 
						
							| 8 |  | fzsn |  |-  ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 10 | 9 | eleq2i |  |-  ( k e. ( 0 ... 0 ) <-> k e. { 0 } ) | 
						
							| 11 |  | velsn |  |-  ( k e. { 0 } <-> k = 0 ) | 
						
							| 12 | 10 11 | bitri |  |-  ( k e. ( 0 ... 0 ) <-> k = 0 ) | 
						
							| 13 |  | oveq2 |  |-  ( k = 0 -> ( X + k ) = ( X + 0 ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ k = 0 ) -> ( X + k ) = ( X + 0 ) ) | 
						
							| 15 | 6 | addridd |  |-  ( ph -> ( X + 0 ) = X ) | 
						
							| 16 | 15 3 | eqeltrd |  |-  ( ph -> ( X + 0 ) e. A ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ k = 0 ) -> ( X + 0 ) e. A ) | 
						
							| 18 | 14 17 | eqeltrd |  |-  ( ( ph /\ k = 0 ) -> ( X + k ) e. A ) | 
						
							| 19 | 12 18 | sylan2b |  |-  ( ( ph /\ k e. ( 0 ... 0 ) ) -> ( X + k ) e. A ) | 
						
							| 20 | 5 1 2 6 19 | fwddifnval |  |-  ( ph -> ( ( 0 _/_\^n F ) ` X ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 21 | 15 | fveq2d |  |-  ( ph -> ( F ` ( X + 0 ) ) = ( F ` X ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ph -> ( 1 x. ( F ` ( X + 0 ) ) ) = ( 1 x. ( F ` X ) ) ) | 
						
							| 23 | 2 3 | ffvelcdmd |  |-  ( ph -> ( F ` X ) e. CC ) | 
						
							| 24 | 23 | mullidd |  |-  ( ph -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ph -> ( 1 x. ( F ` ( X + 0 ) ) ) = ( F ` X ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) = ( 1 x. ( F ` X ) ) ) | 
						
							| 27 | 26 24 | eqtrd |  |-  ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) = ( F ` X ) ) | 
						
							| 28 | 27 23 | eqeltrd |  |-  ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) e. CC ) | 
						
							| 29 |  | oveq2 |  |-  ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) | 
						
							| 30 |  | bcnn |  |-  ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) | 
						
							| 31 | 4 30 | ax-mp |  |-  ( 0 _C 0 ) = 1 | 
						
							| 32 | 29 31 | eqtrdi |  |-  ( k = 0 -> ( 0 _C k ) = 1 ) | 
						
							| 33 |  | oveq2 |  |-  ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) | 
						
							| 34 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( k = 0 -> ( 0 - k ) = 0 ) | 
						
							| 36 | 35 | oveq2d |  |-  ( k = 0 -> ( -u 1 ^ ( 0 - k ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 37 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 38 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 39 | 37 38 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 40 | 36 39 | eqtrdi |  |-  ( k = 0 -> ( -u 1 ^ ( 0 - k ) ) = 1 ) | 
						
							| 41 | 13 | fveq2d |  |-  ( k = 0 -> ( F ` ( X + k ) ) = ( F ` ( X + 0 ) ) ) | 
						
							| 42 | 40 41 | oveq12d |  |-  ( k = 0 -> ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) = ( 1 x. ( F ` ( X + 0 ) ) ) ) | 
						
							| 43 | 32 42 | oveq12d |  |-  ( k = 0 -> ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) | 
						
							| 44 | 43 | fsum1 |  |-  ( ( 0 e. ZZ /\ ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) | 
						
							| 45 | 7 28 44 | sylancr |  |-  ( ph -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) | 
						
							| 46 | 45 27 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( F ` X ) ) | 
						
							| 47 | 20 46 | eqtrd |  |-  ( ph -> ( ( 0 _/_\^n F ) ` X ) = ( F ` X ) ) |