Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifn0.1 |
|- ( ph -> A C_ CC ) |
2 |
|
fwddifn0.2 |
|- ( ph -> F : A --> CC ) |
3 |
|
fwddifn0.3 |
|- ( ph -> X e. A ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
4
|
a1i |
|- ( ph -> 0 e. NN0 ) |
6 |
1 3
|
sseldd |
|- ( ph -> X e. CC ) |
7 |
|
0z |
|- 0 e. ZZ |
8 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
9 |
7 8
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
10 |
9
|
eleq2i |
|- ( k e. ( 0 ... 0 ) <-> k e. { 0 } ) |
11 |
|
velsn |
|- ( k e. { 0 } <-> k = 0 ) |
12 |
10 11
|
bitri |
|- ( k e. ( 0 ... 0 ) <-> k = 0 ) |
13 |
|
oveq2 |
|- ( k = 0 -> ( X + k ) = ( X + 0 ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( X + k ) = ( X + 0 ) ) |
15 |
6
|
addid1d |
|- ( ph -> ( X + 0 ) = X ) |
16 |
15 3
|
eqeltrd |
|- ( ph -> ( X + 0 ) e. A ) |
17 |
16
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( X + 0 ) e. A ) |
18 |
14 17
|
eqeltrd |
|- ( ( ph /\ k = 0 ) -> ( X + k ) e. A ) |
19 |
12 18
|
sylan2b |
|- ( ( ph /\ k e. ( 0 ... 0 ) ) -> ( X + k ) e. A ) |
20 |
5 1 2 6 19
|
fwddifnval |
|- ( ph -> ( ( 0 _/_\^n F ) ` X ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) ) |
21 |
15
|
fveq2d |
|- ( ph -> ( F ` ( X + 0 ) ) = ( F ` X ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( 1 x. ( F ` ( X + 0 ) ) ) = ( 1 x. ( F ` X ) ) ) |
23 |
2 3
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. CC ) |
24 |
23
|
mulid2d |
|- ( ph -> ( 1 x. ( F ` X ) ) = ( F ` X ) ) |
25 |
22 24
|
eqtrd |
|- ( ph -> ( 1 x. ( F ` ( X + 0 ) ) ) = ( F ` X ) ) |
26 |
25
|
oveq2d |
|- ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) = ( 1 x. ( F ` X ) ) ) |
27 |
26 24
|
eqtrd |
|- ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) = ( F ` X ) ) |
28 |
27 23
|
eqeltrd |
|- ( ph -> ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) e. CC ) |
29 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
30 |
|
bcnn |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
31 |
4 30
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
32 |
29 31
|
eqtrdi |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
33 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
34 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
35 |
33 34
|
eqtrdi |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
36 |
35
|
oveq2d |
|- ( k = 0 -> ( -u 1 ^ ( 0 - k ) ) = ( -u 1 ^ 0 ) ) |
37 |
|
neg1cn |
|- -u 1 e. CC |
38 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
39 |
37 38
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
40 |
36 39
|
eqtrdi |
|- ( k = 0 -> ( -u 1 ^ ( 0 - k ) ) = 1 ) |
41 |
13
|
fveq2d |
|- ( k = 0 -> ( F ` ( X + k ) ) = ( F ` ( X + 0 ) ) ) |
42 |
40 41
|
oveq12d |
|- ( k = 0 -> ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) = ( 1 x. ( F ` ( X + 0 ) ) ) ) |
43 |
32 42
|
oveq12d |
|- ( k = 0 -> ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) |
44 |
43
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) |
45 |
7 28 44
|
sylancr |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( 1 x. ( 1 x. ( F ` ( X + 0 ) ) ) ) ) |
46 |
45 27
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( -u 1 ^ ( 0 - k ) ) x. ( F ` ( X + k ) ) ) ) = ( F ` X ) ) |
47 |
20 46
|
eqtrd |
|- ( ph -> ( ( 0 _/_\^n F ) ` X ) = ( F ` X ) ) |