| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifnp1.1 |  |-  ( ph -> N e. NN0 ) | 
						
							| 2 |  | fwddifnp1.2 |  |-  ( ph -> A C_ CC ) | 
						
							| 3 |  | fwddifnp1.3 |  |-  ( ph -> F : A --> CC ) | 
						
							| 4 |  | fwddifnp1.4 |  |-  ( ph -> X e. CC ) | 
						
							| 5 |  | fwddifnp1.5 |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( X + k ) e. A ) | 
						
							| 6 |  | elfzelz |  |-  ( k e. ( 0 ... ( N + 1 ) ) -> k e. ZZ ) | 
						
							| 7 |  | bcpasc |  |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) | 
						
							| 8 | 1 6 7 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 10 |  | bccl |  |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) | 
						
							| 11 | 1 6 10 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. NN0 ) | 
						
							| 12 | 11 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. CC ) | 
						
							| 13 |  | peano2zm |  |-  ( k e. ZZ -> ( k - 1 ) e. ZZ ) | 
						
							| 14 | 6 13 | syl |  |-  ( k e. ( 0 ... ( N + 1 ) ) -> ( k - 1 ) e. ZZ ) | 
						
							| 15 |  | bccl |  |-  ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 ) | 
						
							| 16 | 1 14 15 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) | 
						
							| 18 | 12 17 | addcomd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N _C ( k - 1 ) ) + ( N _C k ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) + ( N _C k ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 20 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 21 | 1 20 | syl |  |-  ( ph -> ( N + 1 ) e. NN0 ) | 
						
							| 22 | 21 | nn0zd |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 23 |  | zsubcl |  |-  ( ( ( N + 1 ) e. ZZ /\ k e. ZZ ) -> ( ( N + 1 ) - k ) e. ZZ ) | 
						
							| 24 | 22 6 23 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) e. ZZ ) | 
						
							| 25 |  | m1expcl |  |-  ( ( ( N + 1 ) - k ) e. ZZ -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. ZZ ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. ZZ ) | 
						
							| 27 | 26 | zcnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. CC ) | 
						
							| 28 | 3 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> F : A --> CC ) | 
						
							| 29 | 28 5 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( F ` ( X + k ) ) e. CC ) | 
						
							| 30 | 27 29 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) e. CC ) | 
						
							| 31 | 17 12 30 | adddird |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) + ( N _C k ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 32 | 19 31 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 33 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> N e. NN0 ) | 
						
							| 34 | 33 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> N e. CC ) | 
						
							| 35 | 6 | adantl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ZZ ) | 
						
							| 36 | 35 | zcnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. CC ) | 
						
							| 37 |  | 1cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> 1 e. CC ) | 
						
							| 38 | 34 36 37 | subsub3d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N + 1 ) - k ) ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) = ( N - ( k - 1 ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( -u 1 ^ ( N - ( k - 1 ) ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 43 | 34 37 36 | addsubd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) = ( ( N - k ) + 1 ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( -u 1 ^ ( ( N - k ) + 1 ) ) ) | 
						
							| 45 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 46 | 45 | a1i |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> -u 1 e. CC ) | 
						
							| 47 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 48 | 47 | a1i |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> -u 1 =/= 0 ) | 
						
							| 49 | 1 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 50 |  | zsubcl |  |-  ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) | 
						
							| 51 | 49 6 50 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - k ) e. ZZ ) | 
						
							| 52 | 46 48 51 | expp1zd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N - k ) + 1 ) ) = ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) ) | 
						
							| 53 | 44 52 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) ) | 
						
							| 54 |  | m1expcl |  |-  ( ( N - k ) e. ZZ -> ( -u 1 ^ ( N - k ) ) e. ZZ ) | 
						
							| 55 | 51 54 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - k ) ) e. ZZ ) | 
						
							| 56 | 55 | zcnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - k ) ) e. CC ) | 
						
							| 57 | 56 46 | mulcomd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N - k ) ) ) ) | 
						
							| 58 | 56 | mulm1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 x. ( -u 1 ^ ( N - k ) ) ) = -u ( -u 1 ^ ( N - k ) ) ) | 
						
							| 59 | 53 57 58 | 3eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = -u ( -u 1 ^ ( N - k ) ) ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = ( -u ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 61 | 56 29 | mulneg1d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) = -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 62 | 60 61 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C k ) x. -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 64 | 56 29 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) e. CC ) | 
						
							| 65 | 12 64 | mulneg2d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 66 | 63 65 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 67 | 42 66 | oveq12d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) + -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 68 |  | zsubcl |  |-  ( ( N e. ZZ /\ ( k - 1 ) e. ZZ ) -> ( N - ( k - 1 ) ) e. ZZ ) | 
						
							| 69 | 49 14 68 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) e. ZZ ) | 
						
							| 70 |  | m1expcl |  |-  ( ( N - ( k - 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. ZZ ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. ZZ ) | 
						
							| 72 | 71 | zcnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. CC ) | 
						
							| 73 | 72 29 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) e. CC ) | 
						
							| 74 | 17 73 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 75 | 12 64 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 76 | 74 75 | negsubd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) + -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 77 | 32 67 76 | 3eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 78 | 9 77 | eqtr3d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 79 | 78 | sumeq2dv |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 80 |  | fzfid |  |-  ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) | 
						
							| 81 | 80 74 75 | fsumsub |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 82 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 83 | 21 82 | eleqtrdi |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 84 |  | oveq1 |  |-  ( k = 0 -> ( k - 1 ) = ( 0 - 1 ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( k = 0 -> ( N _C ( k - 1 ) ) = ( N _C ( 0 - 1 ) ) ) | 
						
							| 86 | 84 | oveq2d |  |-  ( k = 0 -> ( N - ( k - 1 ) ) = ( N - ( 0 - 1 ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( k = 0 -> ( -u 1 ^ ( N - ( k - 1 ) ) ) = ( -u 1 ^ ( N - ( 0 - 1 ) ) ) ) | 
						
							| 88 |  | oveq2 |  |-  ( k = 0 -> ( X + k ) = ( X + 0 ) ) | 
						
							| 89 | 88 | fveq2d |  |-  ( k = 0 -> ( F ` ( X + k ) ) = ( F ` ( X + 0 ) ) ) | 
						
							| 90 | 87 89 | oveq12d |  |-  ( k = 0 -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) | 
						
							| 91 | 85 90 | oveq12d |  |-  ( k = 0 -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) ) | 
						
							| 92 | 83 74 91 | fsum1p |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 93 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 94 | 93 | oveq2i |  |-  ( N _C -u 1 ) = ( N _C ( 0 - 1 ) ) | 
						
							| 95 |  | bcneg1 |  |-  ( N e. NN0 -> ( N _C -u 1 ) = 0 ) | 
						
							| 96 | 1 95 | syl |  |-  ( ph -> ( N _C -u 1 ) = 0 ) | 
						
							| 97 | 94 96 | eqtr3id |  |-  ( ph -> ( N _C ( 0 - 1 ) ) = 0 ) | 
						
							| 98 | 97 | oveq1d |  |-  ( ph -> ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = ( 0 x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) ) | 
						
							| 99 |  | 0z |  |-  0 e. ZZ | 
						
							| 100 |  | 1z |  |-  1 e. ZZ | 
						
							| 101 |  | zsubcl |  |-  ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( 0 - 1 ) e. ZZ ) | 
						
							| 102 | 99 100 101 | mp2an |  |-  ( 0 - 1 ) e. ZZ | 
						
							| 103 | 102 | a1i |  |-  ( ph -> ( 0 - 1 ) e. ZZ ) | 
						
							| 104 | 49 103 | zsubcld |  |-  ( ph -> ( N - ( 0 - 1 ) ) e. ZZ ) | 
						
							| 105 |  | m1expcl |  |-  ( ( N - ( 0 - 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. ZZ ) | 
						
							| 106 | 104 105 | syl |  |-  ( ph -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. ZZ ) | 
						
							| 107 | 106 | zcnd |  |-  ( ph -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. CC ) | 
						
							| 108 |  | eluzfz1 |  |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 109 | 83 108 | syl |  |-  ( ph -> 0 e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 110 | 5 | ralrimiva |  |-  ( ph -> A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A ) | 
						
							| 111 | 88 | eleq1d |  |-  ( k = 0 -> ( ( X + k ) e. A <-> ( X + 0 ) e. A ) ) | 
						
							| 112 | 111 | rspcva |  |-  ( ( 0 e. ( 0 ... ( N + 1 ) ) /\ A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A ) -> ( X + 0 ) e. A ) | 
						
							| 113 | 109 110 112 | syl2anc |  |-  ( ph -> ( X + 0 ) e. A ) | 
						
							| 114 | 3 113 | ffvelcdmd |  |-  ( ph -> ( F ` ( X + 0 ) ) e. CC ) | 
						
							| 115 | 107 114 | mulcld |  |-  ( ph -> ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) e. CC ) | 
						
							| 116 | 115 | mul02d |  |-  ( ph -> ( 0 x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = 0 ) | 
						
							| 117 | 98 116 | eqtrd |  |-  ( ph -> ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = 0 ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ph -> ( ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) = ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 119 |  | fzfid |  |-  ( ph -> ( ( 0 + 1 ) ... ( N + 1 ) ) e. Fin ) | 
						
							| 120 |  | olc |  |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) | 
						
							| 121 |  | elfzp12 |  |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( k e. ( 0 ... ( N + 1 ) ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) ) | 
						
							| 122 | 83 121 | syl |  |-  ( ph -> ( k e. ( 0 ... ( N + 1 ) ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) ) | 
						
							| 123 | 122 | biimpar |  |-  ( ( ph /\ ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 124 | 120 123 | sylan2 |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 125 | 124 74 | syldan |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 126 | 119 125 | fsumcl |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 127 | 126 | addlidd |  |-  ( ph -> ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 128 | 92 118 127 | 3eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 129 | 4 | adantr |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> X e. CC ) | 
						
							| 130 |  | 1cnd |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> 1 e. CC ) | 
						
							| 131 |  | elfzelz |  |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ZZ ) | 
						
							| 132 | 131 | zcnd |  |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. CC ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. CC ) | 
						
							| 134 | 129 130 133 | ppncand |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( X + 1 ) + ( k - 1 ) ) = ( X + k ) ) | 
						
							| 135 | 134 | fveq2d |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) = ( F ` ( X + k ) ) ) | 
						
							| 136 | 135 | oveq2d |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 138 | 137 | sumeq2dv |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 139 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 140 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 141 |  | elfzelz |  |-  ( j e. ( 0 ... N ) -> j e. ZZ ) | 
						
							| 142 |  | bccl |  |-  ( ( N e. NN0 /\ j e. ZZ ) -> ( N _C j ) e. NN0 ) | 
						
							| 143 | 142 | nn0cnd |  |-  ( ( N e. NN0 /\ j e. ZZ ) -> ( N _C j ) e. CC ) | 
						
							| 144 | 1 141 143 | syl2an |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( N _C j ) e. CC ) | 
						
							| 145 |  | zsubcl |  |-  ( ( N e. ZZ /\ j e. ZZ ) -> ( N - j ) e. ZZ ) | 
						
							| 146 | 49 141 145 | syl2an |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( N - j ) e. ZZ ) | 
						
							| 147 |  | m1expcl |  |-  ( ( N - j ) e. ZZ -> ( -u 1 ^ ( N - j ) ) e. ZZ ) | 
						
							| 148 | 146 147 | syl |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( -u 1 ^ ( N - j ) ) e. ZZ ) | 
						
							| 149 | 148 | zcnd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( -u 1 ^ ( N - j ) ) e. CC ) | 
						
							| 150 | 3 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> F : A --> CC ) | 
						
							| 151 | 4 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> X e. CC ) | 
						
							| 152 |  | 1cnd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> 1 e. CC ) | 
						
							| 153 | 141 | zcnd |  |-  ( j e. ( 0 ... N ) -> j e. CC ) | 
						
							| 154 | 153 | adantl |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> j e. CC ) | 
						
							| 155 | 151 152 154 | addassd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) = ( X + ( 1 + j ) ) ) | 
						
							| 156 | 152 154 | addcomd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 + j ) = ( j + 1 ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( X + ( 1 + j ) ) = ( X + ( j + 1 ) ) ) | 
						
							| 158 | 155 157 | eqtrd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) = ( X + ( j + 1 ) ) ) | 
						
							| 159 |  | fzp1elp1 |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 160 |  | oveq2 |  |-  ( k = ( j + 1 ) -> ( X + k ) = ( X + ( j + 1 ) ) ) | 
						
							| 161 | 160 | eleq1d |  |-  ( k = ( j + 1 ) -> ( ( X + k ) e. A <-> ( X + ( j + 1 ) ) e. A ) ) | 
						
							| 162 | 161 | rspccv |  |-  ( A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( X + ( j + 1 ) ) e. A ) ) | 
						
							| 163 | 110 162 | syl |  |-  ( ph -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( X + ( j + 1 ) ) e. A ) ) | 
						
							| 164 | 163 | imp |  |-  ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( j + 1 ) ) e. A ) | 
						
							| 165 | 159 164 | sylan2 |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( X + ( j + 1 ) ) e. A ) | 
						
							| 166 | 158 165 | eqeltrd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) e. A ) | 
						
							| 167 | 150 166 | ffvelcdmd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( F ` ( ( X + 1 ) + j ) ) e. CC ) | 
						
							| 168 | 149 167 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) e. CC ) | 
						
							| 169 | 144 168 | mulcld |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) e. CC ) | 
						
							| 170 |  | oveq2 |  |-  ( j = ( k - 1 ) -> ( N _C j ) = ( N _C ( k - 1 ) ) ) | 
						
							| 171 |  | oveq2 |  |-  ( j = ( k - 1 ) -> ( N - j ) = ( N - ( k - 1 ) ) ) | 
						
							| 172 | 171 | oveq2d |  |-  ( j = ( k - 1 ) -> ( -u 1 ^ ( N - j ) ) = ( -u 1 ^ ( N - ( k - 1 ) ) ) ) | 
						
							| 173 |  | oveq2 |  |-  ( j = ( k - 1 ) -> ( ( X + 1 ) + j ) = ( ( X + 1 ) + ( k - 1 ) ) ) | 
						
							| 174 | 173 | fveq2d |  |-  ( j = ( k - 1 ) -> ( F ` ( ( X + 1 ) + j ) ) = ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) | 
						
							| 175 | 172 174 | oveq12d |  |-  ( j = ( k - 1 ) -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) | 
						
							| 176 | 170 175 | oveq12d |  |-  ( j = ( k - 1 ) -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) ) | 
						
							| 177 | 139 140 49 169 176 | fsumshft |  |-  ( ph -> sum_ j e. ( 0 ... N ) ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) ) | 
						
							| 178 |  | oveq2 |  |-  ( j = k -> ( N _C j ) = ( N _C k ) ) | 
						
							| 179 |  | oveq2 |  |-  ( j = k -> ( N - j ) = ( N - k ) ) | 
						
							| 180 | 179 | oveq2d |  |-  ( j = k -> ( -u 1 ^ ( N - j ) ) = ( -u 1 ^ ( N - k ) ) ) | 
						
							| 181 |  | oveq2 |  |-  ( j = k -> ( ( X + 1 ) + j ) = ( ( X + 1 ) + k ) ) | 
						
							| 182 | 181 | fveq2d |  |-  ( j = k -> ( F ` ( ( X + 1 ) + j ) ) = ( F ` ( ( X + 1 ) + k ) ) ) | 
						
							| 183 | 180 182 | oveq12d |  |-  ( j = k -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) | 
						
							| 184 | 178 183 | oveq12d |  |-  ( j = k -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) ) | 
						
							| 185 | 184 | cbvsumv |  |-  sum_ j e. ( 0 ... N ) ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) | 
						
							| 186 | 177 185 | eqtr3di |  |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) ) | 
						
							| 187 | 128 138 186 | 3eqtr2d |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) ) | 
						
							| 188 | 1 82 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 189 |  | oveq2 |  |-  ( k = ( N + 1 ) -> ( N _C k ) = ( N _C ( N + 1 ) ) ) | 
						
							| 190 |  | oveq2 |  |-  ( k = ( N + 1 ) -> ( N - k ) = ( N - ( N + 1 ) ) ) | 
						
							| 191 | 190 | oveq2d |  |-  ( k = ( N + 1 ) -> ( -u 1 ^ ( N - k ) ) = ( -u 1 ^ ( N - ( N + 1 ) ) ) ) | 
						
							| 192 |  | oveq2 |  |-  ( k = ( N + 1 ) -> ( X + k ) = ( X + ( N + 1 ) ) ) | 
						
							| 193 | 192 | fveq2d |  |-  ( k = ( N + 1 ) -> ( F ` ( X + k ) ) = ( F ` ( X + ( N + 1 ) ) ) ) | 
						
							| 194 | 191 193 | oveq12d |  |-  ( k = ( N + 1 ) -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) | 
						
							| 195 | 189 194 | oveq12d |  |-  ( k = ( N + 1 ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) | 
						
							| 196 | 188 75 195 | fsump1 |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) ) | 
						
							| 197 |  | bcval |  |-  ( ( N e. NN0 /\ ( N + 1 ) e. ZZ ) -> ( N _C ( N + 1 ) ) = if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) ) | 
						
							| 198 | 1 22 197 | syl2anc |  |-  ( ph -> ( N _C ( N + 1 ) ) = if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) ) | 
						
							| 199 |  | fzp1nel |  |-  -. ( N + 1 ) e. ( 0 ... N ) | 
						
							| 200 | 199 | iffalsei |  |-  if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) = 0 | 
						
							| 201 | 198 200 | eqtrdi |  |-  ( ph -> ( N _C ( N + 1 ) ) = 0 ) | 
						
							| 202 | 201 | oveq1d |  |-  ( ph -> ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = ( 0 x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) | 
						
							| 203 | 49 22 | zsubcld |  |-  ( ph -> ( N - ( N + 1 ) ) e. ZZ ) | 
						
							| 204 |  | m1expcl |  |-  ( ( N - ( N + 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. ZZ ) | 
						
							| 205 | 204 | zcnd |  |-  ( ( N - ( N + 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. CC ) | 
						
							| 206 | 203 205 | syl |  |-  ( ph -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. CC ) | 
						
							| 207 |  | eluzfz2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( N + 1 ) e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 208 | 83 207 | syl |  |-  ( ph -> ( N + 1 ) e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 209 | 192 | eleq1d |  |-  ( k = ( N + 1 ) -> ( ( X + k ) e. A <-> ( X + ( N + 1 ) ) e. A ) ) | 
						
							| 210 | 209 | rspcv |  |-  ( ( N + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A -> ( X + ( N + 1 ) ) e. A ) ) | 
						
							| 211 | 208 110 210 | sylc |  |-  ( ph -> ( X + ( N + 1 ) ) e. A ) | 
						
							| 212 | 3 211 | ffvelcdmd |  |-  ( ph -> ( F ` ( X + ( N + 1 ) ) ) e. CC ) | 
						
							| 213 | 206 212 | mulcld |  |-  ( ph -> ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) e. CC ) | 
						
							| 214 | 213 | mul02d |  |-  ( ph -> ( 0 x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = 0 ) | 
						
							| 215 | 202 214 | eqtrd |  |-  ( ph -> ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = 0 ) | 
						
							| 216 | 215 | oveq2d |  |-  ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + 0 ) ) | 
						
							| 217 |  | fzfid |  |-  ( ph -> ( 0 ... N ) e. Fin ) | 
						
							| 218 |  | fzelp1 |  |-  ( k e. ( 0 ... N ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 219 | 218 75 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 220 | 217 219 | fsumcl |  |-  ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC ) | 
						
							| 221 | 220 | addridd |  |-  ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + 0 ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 222 | 196 216 221 | 3eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 223 | 187 222 | oveq12d |  |-  ( ph -> ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 224 | 79 81 223 | 3eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 225 | 21 2 3 4 5 | fwddifnval |  |-  ( ph -> ( ( ( N + 1 ) _/_\^n F ) ` X ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 226 |  | peano2cn |  |-  ( X e. CC -> ( X + 1 ) e. CC ) | 
						
							| 227 | 4 226 | syl |  |-  ( ph -> ( X + 1 ) e. CC ) | 
						
							| 228 | 4 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> X e. CC ) | 
						
							| 229 |  | 1cnd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> 1 e. CC ) | 
						
							| 230 |  | elfzelz |  |-  ( k e. ( 0 ... N ) -> k e. ZZ ) | 
						
							| 231 | 230 | zcnd |  |-  ( k e. ( 0 ... N ) -> k e. CC ) | 
						
							| 232 | 231 | adantl |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) | 
						
							| 233 | 228 229 232 | addassd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) = ( X + ( 1 + k ) ) ) | 
						
							| 234 | 229 232 | addcomd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( 1 + k ) = ( k + 1 ) ) | 
						
							| 235 | 234 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + ( 1 + k ) ) = ( X + ( k + 1 ) ) ) | 
						
							| 236 | 233 235 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) = ( X + ( k + 1 ) ) ) | 
						
							| 237 |  | fzp1elp1 |  |-  ( k e. ( 0 ... N ) -> ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 238 |  | oveq1 |  |-  ( j = k -> ( j + 1 ) = ( k + 1 ) ) | 
						
							| 239 | 238 | eleq1d |  |-  ( j = k -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) <-> ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) ) | 
						
							| 240 | 239 | anbi2d |  |-  ( j = k -> ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) <-> ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) ) ) | 
						
							| 241 | 238 | oveq2d |  |-  ( j = k -> ( X + ( j + 1 ) ) = ( X + ( k + 1 ) ) ) | 
						
							| 242 | 241 | eleq1d |  |-  ( j = k -> ( ( X + ( j + 1 ) ) e. A <-> ( X + ( k + 1 ) ) e. A ) ) | 
						
							| 243 | 240 242 | imbi12d |  |-  ( j = k -> ( ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( j + 1 ) ) e. A ) <-> ( ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( k + 1 ) ) e. A ) ) ) | 
						
							| 244 | 243 164 | chvarvv |  |-  ( ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( k + 1 ) ) e. A ) | 
						
							| 245 | 237 244 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + ( k + 1 ) ) e. A ) | 
						
							| 246 | 236 245 | eqeltrd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) e. A ) | 
						
							| 247 | 1 2 3 227 246 | fwddifnval |  |-  ( ph -> ( ( N _/_\^n F ) ` ( X + 1 ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) ) | 
						
							| 248 | 218 5 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. A ) | 
						
							| 249 | 1 2 3 4 248 | fwddifnval |  |-  ( ph -> ( ( N _/_\^n F ) ` X ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 250 | 247 249 | oveq12d |  |-  ( ph -> ( ( ( N _/_\^n F ) ` ( X + 1 ) ) - ( ( N _/_\^n F ) ` X ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) ) | 
						
							| 251 | 224 225 250 | 3eqtr4d |  |-  ( ph -> ( ( ( N + 1 ) _/_\^n F ) ` X ) = ( ( ( N _/_\^n F ) ` ( X + 1 ) ) - ( ( N _/_\^n F ) ` X ) ) ) |