Metamath Proof Explorer


Theorem fwddifnp1

Description: The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Hypotheses fwddifnp1.1
|- ( ph -> N e. NN0 )
fwddifnp1.2
|- ( ph -> A C_ CC )
fwddifnp1.3
|- ( ph -> F : A --> CC )
fwddifnp1.4
|- ( ph -> X e. CC )
fwddifnp1.5
|- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( X + k ) e. A )
Assertion fwddifnp1
|- ( ph -> ( ( ( N + 1 ) _/_\^n F ) ` X ) = ( ( ( N _/_\^n F ) ` ( X + 1 ) ) - ( ( N _/_\^n F ) ` X ) ) )

Proof

Step Hyp Ref Expression
1 fwddifnp1.1
 |-  ( ph -> N e. NN0 )
2 fwddifnp1.2
 |-  ( ph -> A C_ CC )
3 fwddifnp1.3
 |-  ( ph -> F : A --> CC )
4 fwddifnp1.4
 |-  ( ph -> X e. CC )
5 fwddifnp1.5
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( X + k ) e. A )
6 elfzelz
 |-  ( k e. ( 0 ... ( N + 1 ) ) -> k e. ZZ )
7 bcpasc
 |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) )
8 1 6 7 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) )
9 8 oveq1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) )
10 bccl
 |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 )
11 1 6 10 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. NN0 )
12 11 nn0cnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. CC )
13 peano2zm
 |-  ( k e. ZZ -> ( k - 1 ) e. ZZ )
14 6 13 syl
 |-  ( k e. ( 0 ... ( N + 1 ) ) -> ( k - 1 ) e. ZZ )
15 bccl
 |-  ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 )
16 1 14 15 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 )
17 16 nn0cnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC )
18 12 17 addcomd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N _C ( k - 1 ) ) + ( N _C k ) ) )
19 18 oveq1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) + ( N _C k ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) )
20 peano2nn0
 |-  ( N e. NN0 -> ( N + 1 ) e. NN0 )
21 1 20 syl
 |-  ( ph -> ( N + 1 ) e. NN0 )
22 21 nn0zd
 |-  ( ph -> ( N + 1 ) e. ZZ )
23 zsubcl
 |-  ( ( ( N + 1 ) e. ZZ /\ k e. ZZ ) -> ( ( N + 1 ) - k ) e. ZZ )
24 22 6 23 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) e. ZZ )
25 m1expcl
 |-  ( ( ( N + 1 ) - k ) e. ZZ -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. ZZ )
26 24 25 syl
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. ZZ )
27 26 zcnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) e. CC )
28 3 adantr
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> F : A --> CC )
29 28 5 ffvelrnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( F ` ( X + k ) ) e. CC )
30 27 29 mulcld
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) e. CC )
31 17 12 30 adddird
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) + ( N _C k ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
32 19 31 eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
33 1 adantr
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> N e. NN0 )
34 33 nn0cnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> N e. CC )
35 6 adantl
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ZZ )
36 35 zcnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. CC )
37 1cnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> 1 e. CC )
38 34 36 37 subsub3d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N + 1 ) - k ) )
39 38 eqcomd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) = ( N - ( k - 1 ) ) )
40 39 oveq2d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( -u 1 ^ ( N - ( k - 1 ) ) ) )
41 40 oveq1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) )
42 41 oveq2d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) )
43 34 37 36 addsubd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) = ( ( N - k ) + 1 ) )
44 43 oveq2d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( -u 1 ^ ( ( N - k ) + 1 ) ) )
45 neg1cn
 |-  -u 1 e. CC
46 45 a1i
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> -u 1 e. CC )
47 neg1ne0
 |-  -u 1 =/= 0
48 47 a1i
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> -u 1 =/= 0 )
49 1 nn0zd
 |-  ( ph -> N e. ZZ )
50 zsubcl
 |-  ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ )
51 49 6 50 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - k ) e. ZZ )
52 46 48 51 expp1zd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N - k ) + 1 ) ) = ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) )
53 44 52 eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) )
54 m1expcl
 |-  ( ( N - k ) e. ZZ -> ( -u 1 ^ ( N - k ) ) e. ZZ )
55 51 54 syl
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - k ) ) e. ZZ )
56 55 zcnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - k ) ) e. CC )
57 56 46 mulcomd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - k ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( N - k ) ) ) )
58 56 mulm1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 x. ( -u 1 ^ ( N - k ) ) ) = -u ( -u 1 ^ ( N - k ) ) )
59 53 57 58 3eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( ( N + 1 ) - k ) ) = -u ( -u 1 ^ ( N - k ) ) )
60 59 oveq1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = ( -u ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) )
61 56 29 mulneg1d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) = -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) )
62 60 61 eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) = -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) )
63 62 oveq2d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C k ) x. -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
64 56 29 mulcld
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) e. CC )
65 12 64 mulneg2d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. -u ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
66 63 65 eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
67 42 66 oveq12d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) + -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
68 zsubcl
 |-  ( ( N e. ZZ /\ ( k - 1 ) e. ZZ ) -> ( N - ( k - 1 ) ) e. ZZ )
69 49 14 68 syl2an
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) e. ZZ )
70 m1expcl
 |-  ( ( N - ( k - 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. ZZ )
71 69 70 syl
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. ZZ )
72 71 zcnd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -u 1 ^ ( N - ( k - 1 ) ) ) e. CC )
73 72 29 mulcld
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) e. CC )
74 17 73 mulcld
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
75 12 64 mulcld
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
76 74 75 negsubd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) + -u ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
77 32 67 76 3eqtrd
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
78 9 77 eqtr3d
 |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
79 78 sumeq2dv
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
80 fzfid
 |-  ( ph -> ( 0 ... ( N + 1 ) ) e. Fin )
81 80 74 75 fsumsub
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
82 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
83 21 82 eleqtrdi
 |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` 0 ) )
84 oveq1
 |-  ( k = 0 -> ( k - 1 ) = ( 0 - 1 ) )
85 84 oveq2d
 |-  ( k = 0 -> ( N _C ( k - 1 ) ) = ( N _C ( 0 - 1 ) ) )
86 84 oveq2d
 |-  ( k = 0 -> ( N - ( k - 1 ) ) = ( N - ( 0 - 1 ) ) )
87 86 oveq2d
 |-  ( k = 0 -> ( -u 1 ^ ( N - ( k - 1 ) ) ) = ( -u 1 ^ ( N - ( 0 - 1 ) ) ) )
88 oveq2
 |-  ( k = 0 -> ( X + k ) = ( X + 0 ) )
89 88 fveq2d
 |-  ( k = 0 -> ( F ` ( X + k ) ) = ( F ` ( X + 0 ) ) )
90 87 89 oveq12d
 |-  ( k = 0 -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) )
91 85 90 oveq12d
 |-  ( k = 0 -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) )
92 83 74 91 fsum1p
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = ( ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) )
93 df-neg
 |-  -u 1 = ( 0 - 1 )
94 93 oveq2i
 |-  ( N _C -u 1 ) = ( N _C ( 0 - 1 ) )
95 bcneg1
 |-  ( N e. NN0 -> ( N _C -u 1 ) = 0 )
96 1 95 syl
 |-  ( ph -> ( N _C -u 1 ) = 0 )
97 94 96 eqtr3id
 |-  ( ph -> ( N _C ( 0 - 1 ) ) = 0 )
98 97 oveq1d
 |-  ( ph -> ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = ( 0 x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) )
99 0z
 |-  0 e. ZZ
100 1z
 |-  1 e. ZZ
101 zsubcl
 |-  ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( 0 - 1 ) e. ZZ )
102 99 100 101 mp2an
 |-  ( 0 - 1 ) e. ZZ
103 102 a1i
 |-  ( ph -> ( 0 - 1 ) e. ZZ )
104 49 103 zsubcld
 |-  ( ph -> ( N - ( 0 - 1 ) ) e. ZZ )
105 m1expcl
 |-  ( ( N - ( 0 - 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. ZZ )
106 104 105 syl
 |-  ( ph -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. ZZ )
107 106 zcnd
 |-  ( ph -> ( -u 1 ^ ( N - ( 0 - 1 ) ) ) e. CC )
108 eluzfz1
 |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( N + 1 ) ) )
109 83 108 syl
 |-  ( ph -> 0 e. ( 0 ... ( N + 1 ) ) )
110 5 ralrimiva
 |-  ( ph -> A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A )
111 88 eleq1d
 |-  ( k = 0 -> ( ( X + k ) e. A <-> ( X + 0 ) e. A ) )
112 111 rspcva
 |-  ( ( 0 e. ( 0 ... ( N + 1 ) ) /\ A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A ) -> ( X + 0 ) e. A )
113 109 110 112 syl2anc
 |-  ( ph -> ( X + 0 ) e. A )
114 3 113 ffvelrnd
 |-  ( ph -> ( F ` ( X + 0 ) ) e. CC )
115 107 114 mulcld
 |-  ( ph -> ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) e. CC )
116 115 mul02d
 |-  ( ph -> ( 0 x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = 0 )
117 98 116 eqtrd
 |-  ( ph -> ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) = 0 )
118 117 oveq1d
 |-  ( ph -> ( ( ( N _C ( 0 - 1 ) ) x. ( ( -u 1 ^ ( N - ( 0 - 1 ) ) ) x. ( F ` ( X + 0 ) ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) = ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) )
119 fzfid
 |-  ( ph -> ( ( 0 + 1 ) ... ( N + 1 ) ) e. Fin )
120 olc
 |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) )
121 elfzp12
 |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( k e. ( 0 ... ( N + 1 ) ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) )
122 83 121 syl
 |-  ( ph -> ( k e. ( 0 ... ( N + 1 ) ) <-> ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) )
123 122 biimpar
 |-  ( ( ph /\ ( k = 0 \/ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ( 0 ... ( N + 1 ) ) )
124 120 123 sylan2
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) )
125 124 74 syldan
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
126 119 125 fsumcl
 |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
127 126 addid2d
 |-  ( ph -> ( 0 + sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) )
128 92 118 127 3eqtrd
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) )
129 4 adantr
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> X e. CC )
130 1cnd
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> 1 e. CC )
131 elfzelz
 |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ZZ )
132 131 zcnd
 |-  ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. CC )
133 132 adantl
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. CC )
134 129 130 133 ppncand
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( X + 1 ) + ( k - 1 ) ) = ( X + k ) )
135 134 fveq2d
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) = ( F ` ( X + k ) ) )
136 135 oveq2d
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) )
137 136 oveq2d
 |-  ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) )
138 137 sumeq2dv
 |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) )
139 oveq2
 |-  ( j = k -> ( N _C j ) = ( N _C k ) )
140 oveq2
 |-  ( j = k -> ( N - j ) = ( N - k ) )
141 140 oveq2d
 |-  ( j = k -> ( -u 1 ^ ( N - j ) ) = ( -u 1 ^ ( N - k ) ) )
142 oveq2
 |-  ( j = k -> ( ( X + 1 ) + j ) = ( ( X + 1 ) + k ) )
143 142 fveq2d
 |-  ( j = k -> ( F ` ( ( X + 1 ) + j ) ) = ( F ` ( ( X + 1 ) + k ) ) )
144 141 143 oveq12d
 |-  ( j = k -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) )
145 139 144 oveq12d
 |-  ( j = k -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) )
146 145 cbvsumv
 |-  sum_ j e. ( 0 ... N ) ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) )
147 1zzd
 |-  ( ph -> 1 e. ZZ )
148 0zd
 |-  ( ph -> 0 e. ZZ )
149 elfzelz
 |-  ( j e. ( 0 ... N ) -> j e. ZZ )
150 bccl
 |-  ( ( N e. NN0 /\ j e. ZZ ) -> ( N _C j ) e. NN0 )
151 150 nn0cnd
 |-  ( ( N e. NN0 /\ j e. ZZ ) -> ( N _C j ) e. CC )
152 1 149 151 syl2an
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( N _C j ) e. CC )
153 zsubcl
 |-  ( ( N e. ZZ /\ j e. ZZ ) -> ( N - j ) e. ZZ )
154 49 149 153 syl2an
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( N - j ) e. ZZ )
155 m1expcl
 |-  ( ( N - j ) e. ZZ -> ( -u 1 ^ ( N - j ) ) e. ZZ )
156 154 155 syl
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( -u 1 ^ ( N - j ) ) e. ZZ )
157 156 zcnd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( -u 1 ^ ( N - j ) ) e. CC )
158 3 adantr
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> F : A --> CC )
159 4 adantr
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> X e. CC )
160 1cnd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> 1 e. CC )
161 149 zcnd
 |-  ( j e. ( 0 ... N ) -> j e. CC )
162 161 adantl
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> j e. CC )
163 159 160 162 addassd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) = ( X + ( 1 + j ) ) )
164 160 162 addcomd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( 1 + j ) = ( j + 1 ) )
165 164 oveq2d
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( X + ( 1 + j ) ) = ( X + ( j + 1 ) ) )
166 163 165 eqtrd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) = ( X + ( j + 1 ) ) )
167 fzp1elp1
 |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( 0 ... ( N + 1 ) ) )
168 oveq2
 |-  ( k = ( j + 1 ) -> ( X + k ) = ( X + ( j + 1 ) ) )
169 168 eleq1d
 |-  ( k = ( j + 1 ) -> ( ( X + k ) e. A <-> ( X + ( j + 1 ) ) e. A ) )
170 169 rspccv
 |-  ( A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( X + ( j + 1 ) ) e. A ) )
171 110 170 syl
 |-  ( ph -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( X + ( j + 1 ) ) e. A ) )
172 171 imp
 |-  ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( j + 1 ) ) e. A )
173 167 172 sylan2
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( X + ( j + 1 ) ) e. A )
174 166 173 eqeltrd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( X + 1 ) + j ) e. A )
175 158 174 ffvelrnd
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( F ` ( ( X + 1 ) + j ) ) e. CC )
176 157 175 mulcld
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) e. CC )
177 152 176 mulcld
 |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) e. CC )
178 oveq2
 |-  ( j = ( k - 1 ) -> ( N _C j ) = ( N _C ( k - 1 ) ) )
179 oveq2
 |-  ( j = ( k - 1 ) -> ( N - j ) = ( N - ( k - 1 ) ) )
180 179 oveq2d
 |-  ( j = ( k - 1 ) -> ( -u 1 ^ ( N - j ) ) = ( -u 1 ^ ( N - ( k - 1 ) ) ) )
181 oveq2
 |-  ( j = ( k - 1 ) -> ( ( X + 1 ) + j ) = ( ( X + 1 ) + ( k - 1 ) ) )
182 181 fveq2d
 |-  ( j = ( k - 1 ) -> ( F ` ( ( X + 1 ) + j ) ) = ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) )
183 180 182 oveq12d
 |-  ( j = ( k - 1 ) -> ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) = ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) )
184 178 183 oveq12d
 |-  ( j = ( k - 1 ) -> ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) )
185 147 148 49 177 184 fsumshft
 |-  ( ph -> sum_ j e. ( 0 ... N ) ( ( N _C j ) x. ( ( -u 1 ^ ( N - j ) ) x. ( F ` ( ( X + 1 ) + j ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) )
186 146 185 syl5reqr
 |-  ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( ( X + 1 ) + ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) )
187 128 138 186 3eqtr2d
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) )
188 1 82 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 0 ) )
189 oveq2
 |-  ( k = ( N + 1 ) -> ( N _C k ) = ( N _C ( N + 1 ) ) )
190 oveq2
 |-  ( k = ( N + 1 ) -> ( N - k ) = ( N - ( N + 1 ) ) )
191 190 oveq2d
 |-  ( k = ( N + 1 ) -> ( -u 1 ^ ( N - k ) ) = ( -u 1 ^ ( N - ( N + 1 ) ) ) )
192 oveq2
 |-  ( k = ( N + 1 ) -> ( X + k ) = ( X + ( N + 1 ) ) )
193 192 fveq2d
 |-  ( k = ( N + 1 ) -> ( F ` ( X + k ) ) = ( F ` ( X + ( N + 1 ) ) ) )
194 191 193 oveq12d
 |-  ( k = ( N + 1 ) -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) = ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) )
195 189 194 oveq12d
 |-  ( k = ( N + 1 ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) )
196 188 75 195 fsump1
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) )
197 bcval
 |-  ( ( N e. NN0 /\ ( N + 1 ) e. ZZ ) -> ( N _C ( N + 1 ) ) = if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) )
198 1 22 197 syl2anc
 |-  ( ph -> ( N _C ( N + 1 ) ) = if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) )
199 fzp1nel
 |-  -. ( N + 1 ) e. ( 0 ... N )
200 199 iffalsei
 |-  if ( ( N + 1 ) e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - ( N + 1 ) ) ) x. ( ! ` ( N + 1 ) ) ) ) , 0 ) = 0
201 198 200 eqtrdi
 |-  ( ph -> ( N _C ( N + 1 ) ) = 0 )
202 201 oveq1d
 |-  ( ph -> ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = ( 0 x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) )
203 49 22 zsubcld
 |-  ( ph -> ( N - ( N + 1 ) ) e. ZZ )
204 m1expcl
 |-  ( ( N - ( N + 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. ZZ )
205 204 zcnd
 |-  ( ( N - ( N + 1 ) ) e. ZZ -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. CC )
206 203 205 syl
 |-  ( ph -> ( -u 1 ^ ( N - ( N + 1 ) ) ) e. CC )
207 eluzfz2
 |-  ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( N + 1 ) e. ( 0 ... ( N + 1 ) ) )
208 83 207 syl
 |-  ( ph -> ( N + 1 ) e. ( 0 ... ( N + 1 ) ) )
209 192 eleq1d
 |-  ( k = ( N + 1 ) -> ( ( X + k ) e. A <-> ( X + ( N + 1 ) ) e. A ) )
210 209 rspcv
 |-  ( ( N + 1 ) e. ( 0 ... ( N + 1 ) ) -> ( A. k e. ( 0 ... ( N + 1 ) ) ( X + k ) e. A -> ( X + ( N + 1 ) ) e. A ) )
211 208 110 210 sylc
 |-  ( ph -> ( X + ( N + 1 ) ) e. A )
212 3 211 ffvelrnd
 |-  ( ph -> ( F ` ( X + ( N + 1 ) ) ) e. CC )
213 206 212 mulcld
 |-  ( ph -> ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) e. CC )
214 213 mul02d
 |-  ( ph -> ( 0 x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = 0 )
215 202 214 eqtrd
 |-  ( ph -> ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) = 0 )
216 215 oveq2d
 |-  ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + ( ( N _C ( N + 1 ) ) x. ( ( -u 1 ^ ( N - ( N + 1 ) ) ) x. ( F ` ( X + ( N + 1 ) ) ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + 0 ) )
217 fzfid
 |-  ( ph -> ( 0 ... N ) e. Fin )
218 fzelp1
 |-  ( k e. ( 0 ... N ) -> k e. ( 0 ... ( N + 1 ) ) )
219 218 75 sylan2
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
220 217 219 fsumcl
 |-  ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. CC )
221 220 addid1d
 |-  ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) + 0 ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
222 196 216 221 3eqtrd
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
223 187 222 oveq12d
 |-  ( ph -> ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( -u 1 ^ ( N - ( k - 1 ) ) ) x. ( F ` ( X + k ) ) ) ) - sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
224 79 81 223 3eqtrd
 |-  ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
225 21 2 3 4 5 fwddifnval
 |-  ( ph -> ( ( ( N + 1 ) _/_\^n F ) ` X ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( -u 1 ^ ( ( N + 1 ) - k ) ) x. ( F ` ( X + k ) ) ) ) )
226 peano2cn
 |-  ( X e. CC -> ( X + 1 ) e. CC )
227 4 226 syl
 |-  ( ph -> ( X + 1 ) e. CC )
228 4 adantr
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> X e. CC )
229 1cnd
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> 1 e. CC )
230 elfzelz
 |-  ( k e. ( 0 ... N ) -> k e. ZZ )
231 230 zcnd
 |-  ( k e. ( 0 ... N ) -> k e. CC )
232 231 adantl
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC )
233 228 229 232 addassd
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) = ( X + ( 1 + k ) ) )
234 229 232 addcomd
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( 1 + k ) = ( k + 1 ) )
235 234 oveq2d
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + ( 1 + k ) ) = ( X + ( k + 1 ) ) )
236 233 235 eqtrd
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) = ( X + ( k + 1 ) ) )
237 fzp1elp1
 |-  ( k e. ( 0 ... N ) -> ( k + 1 ) e. ( 0 ... ( N + 1 ) ) )
238 oveq1
 |-  ( j = k -> ( j + 1 ) = ( k + 1 ) )
239 238 eleq1d
 |-  ( j = k -> ( ( j + 1 ) e. ( 0 ... ( N + 1 ) ) <-> ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) )
240 239 anbi2d
 |-  ( j = k -> ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) <-> ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) ) )
241 238 oveq2d
 |-  ( j = k -> ( X + ( j + 1 ) ) = ( X + ( k + 1 ) ) )
242 241 eleq1d
 |-  ( j = k -> ( ( X + ( j + 1 ) ) e. A <-> ( X + ( k + 1 ) ) e. A ) )
243 240 242 imbi12d
 |-  ( j = k -> ( ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( j + 1 ) ) e. A ) <-> ( ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( k + 1 ) ) e. A ) ) )
244 243 172 chvarvv
 |-  ( ( ph /\ ( k + 1 ) e. ( 0 ... ( N + 1 ) ) ) -> ( X + ( k + 1 ) ) e. A )
245 237 244 sylan2
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + ( k + 1 ) ) e. A )
246 236 245 eqeltrd
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( X + 1 ) + k ) e. A )
247 1 2 3 227 246 fwddifnval
 |-  ( ph -> ( ( N _/_\^n F ) ` ( X + 1 ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) )
248 218 5 sylan2
 |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. A )
249 1 2 3 4 248 fwddifnval
 |-  ( ph -> ( ( N _/_\^n F ) ` X ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) )
250 247 249 oveq12d
 |-  ( ph -> ( ( ( N _/_\^n F ) ` ( X + 1 ) ) - ( ( N _/_\^n F ) ` X ) ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( ( X + 1 ) + k ) ) ) ) - sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) )
251 224 225 250 3eqtr4d
 |-  ( ph -> ( ( ( N + 1 ) _/_\^n F ) ` X ) = ( ( ( N _/_\^n F ) ` ( X + 1 ) ) - ( ( N _/_\^n F ) ` X ) ) )