| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 2 |  | bcval |  |-  ( ( N e. NN0 /\ -u 1 e. ZZ ) -> ( N _C -u 1 ) = if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( N e. NN0 -> ( N _C -u 1 ) = if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) ) | 
						
							| 4 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 5 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 6 |  | 0re |  |-  0 e. RR | 
						
							| 7 | 5 6 | ltnlei |  |-  ( -u 1 < 0 <-> -. 0 <_ -u 1 ) | 
						
							| 8 | 4 7 | mpbi |  |-  -. 0 <_ -u 1 | 
						
							| 9 | 8 | intnanr |  |-  -. ( 0 <_ -u 1 /\ -u 1 <_ N ) | 
						
							| 10 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 11 |  | 0z |  |-  0 e. ZZ | 
						
							| 12 |  | elfz |  |-  ( ( -u 1 e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) | 
						
							| 13 | 1 11 12 | mp3an12 |  |-  ( N e. ZZ -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) | 
						
							| 14 | 10 13 | syl |  |-  ( N e. NN0 -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) | 
						
							| 15 | 9 14 | mtbiri |  |-  ( N e. NN0 -> -. -u 1 e. ( 0 ... N ) ) | 
						
							| 16 | 15 | iffalsed |  |-  ( N e. NN0 -> if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) = 0 ) | 
						
							| 17 | 3 16 | eqtrd |  |-  ( N e. NN0 -> ( N _C -u 1 ) = 0 ) |