Step |
Hyp |
Ref |
Expression |
1 |
|
neg1z |
|- -u 1 e. ZZ |
2 |
|
bcval |
|- ( ( N e. NN0 /\ -u 1 e. ZZ ) -> ( N _C -u 1 ) = if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) ) |
3 |
1 2
|
mpan2 |
|- ( N e. NN0 -> ( N _C -u 1 ) = if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) ) |
4 |
|
neg1lt0 |
|- -u 1 < 0 |
5 |
|
neg1rr |
|- -u 1 e. RR |
6 |
|
0re |
|- 0 e. RR |
7 |
5 6
|
ltnlei |
|- ( -u 1 < 0 <-> -. 0 <_ -u 1 ) |
8 |
4 7
|
mpbi |
|- -. 0 <_ -u 1 |
9 |
8
|
intnanr |
|- -. ( 0 <_ -u 1 /\ -u 1 <_ N ) |
10 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
11 |
|
0z |
|- 0 e. ZZ |
12 |
|
elfz |
|- ( ( -u 1 e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) |
13 |
1 11 12
|
mp3an12 |
|- ( N e. ZZ -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) |
14 |
10 13
|
syl |
|- ( N e. NN0 -> ( -u 1 e. ( 0 ... N ) <-> ( 0 <_ -u 1 /\ -u 1 <_ N ) ) ) |
15 |
9 14
|
mtbiri |
|- ( N e. NN0 -> -. -u 1 e. ( 0 ... N ) ) |
16 |
15
|
iffalsed |
|- ( N e. NN0 -> if ( -u 1 e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - -u 1 ) ) x. ( ! ` -u 1 ) ) ) , 0 ) = 0 ) |
17 |
3 16
|
eqtrd |
|- ( N e. NN0 -> ( N _C -u 1 ) = 0 ) |