| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcp1n |  |-  ( K e. ( 0 ... ( N - 1 ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) | 
						
							| 3 |  | simpl |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> N e. NN ) | 
						
							| 4 | 3 | nncnd |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 5 |  | 1cnd |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 6 | 4 5 | npcand |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) | 
						
							| 8 | 6 | oveq1d |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) - K ) = ( N - K ) ) | 
						
							| 9 | 6 8 | oveq12d |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) = ( N / ( N - K ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) | 
						
							| 11 | 2 7 10 | 3eqtr3d |  |-  ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |