Step |
Hyp |
Ref |
Expression |
1 |
|
bcp1n |
|- ( K e. ( 0 ... ( N - 1 ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) |
2 |
1
|
adantl |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) ) |
3 |
|
simpl |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> N e. NN ) |
4 |
3
|
nncnd |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> N e. CC ) |
5 |
|
1cnd |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) |
6 |
4 5
|
npcand |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
7 |
6
|
oveq1d |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) |
8 |
6
|
oveq1d |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) - K ) = ( N - K ) ) |
9 |
6 8
|
oveq12d |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) = ( N / ( N - K ) ) ) |
10 |
9
|
oveq2d |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( N - 1 ) _C K ) x. ( ( ( N - 1 ) + 1 ) / ( ( ( N - 1 ) + 1 ) - K ) ) ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |
11 |
2 7 10
|
3eqtr3d |
|- ( ( N e. NN /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( N _C K ) = ( ( ( N - 1 ) _C K ) x. ( N / ( N - K ) ) ) ) |