Metamath Proof Explorer


Theorem bcm1nt

Description: The proportion of one bionmial coefficient to another with N decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020)

Ref Expression
Assertion bcm1nt N K 0 N 1 ( N K) = ( N 1 K) N N K

Proof

Step Hyp Ref Expression
1 bcp1n K 0 N 1 ( N - 1 + 1 K) = ( N 1 K) N - 1 + 1 N 1 + 1 - K
2 1 adantl N K 0 N 1 ( N - 1 + 1 K) = ( N 1 K) N - 1 + 1 N 1 + 1 - K
3 simpl N K 0 N 1 N
4 3 nncnd N K 0 N 1 N
5 1cnd N K 0 N 1 1
6 4 5 npcand N K 0 N 1 N - 1 + 1 = N
7 6 oveq1d N K 0 N 1 ( N - 1 + 1 K) = ( N K)
8 6 oveq1d N K 0 N 1 N 1 + 1 - K = N K
9 6 8 oveq12d N K 0 N 1 N - 1 + 1 N 1 + 1 - K = N N K
10 9 oveq2d N K 0 N 1 ( N 1 K) N - 1 + 1 N 1 + 1 - K = ( N 1 K) N N K
11 2 7 10 3eqtr3d N K 0 N 1 ( N K) = ( N 1 K) N N K