Metamath Proof Explorer


Theorem bcm1nt

Description: The proportion of one bionmial coefficient to another with N decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020)

Ref Expression
Assertion bcm1nt NK0N1(NK)=(N1K)NNK

Proof

Step Hyp Ref Expression
1 bcp1n K0N1(N-1+1K)=(N1K)N-1+1N1+1-K
2 1 adantl NK0N1(N-1+1K)=(N1K)N-1+1N1+1-K
3 simpl NK0N1N
4 3 nncnd NK0N1N
5 1cnd NK0N11
6 4 5 npcand NK0N1N-1+1=N
7 6 oveq1d NK0N1(N-1+1K)=(NK)
8 6 oveq1d NK0N1N1+1-K=NK
9 6 8 oveq12d NK0N1N-1+1N1+1-K=NNK
10 9 oveq2d NK0N1(N1K)N-1+1N1+1-K=(N1K)NNK
11 2 7 10 3eqtr3d NK0N1(NK)=(N1K)NNK