Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
1m1e0 |
|
3 |
1 2
|
eqtrdi |
|
4 |
3
|
oveq2d |
|
5 |
|
fz10 |
|
6 |
4 5
|
eqtrdi |
|
7 |
3
|
oveq1d |
|
8 |
7
|
adantr |
|
9 |
6 8
|
prodeq12dv |
|
10 |
|
oveq2 |
|
11 |
10
|
oveq2d |
|
12 |
11
|
adantr |
|
13 |
6 12
|
prodeq12dv |
|
14 |
9 13
|
eqeq12d |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq2d |
|
17 |
15
|
oveq1d |
|
18 |
17
|
adantr |
|
19 |
16 18
|
prodeq12dv |
|
20 |
|
oveq2 |
|
21 |
20
|
oveq2d |
|
22 |
21
|
adantr |
|
23 |
16 22
|
prodeq12dv |
|
24 |
19 23
|
eqeq12d |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq2d |
|
27 |
25
|
oveq1d |
|
28 |
27
|
adantr |
|
29 |
26 28
|
prodeq12dv |
|
30 |
|
oveq2 |
|
31 |
30
|
oveq2d |
|
32 |
31
|
adantr |
|
33 |
26 32
|
prodeq12dv |
|
34 |
29 33
|
eqeq12d |
|
35 |
|
oveq1 |
|
36 |
35
|
oveq2d |
|
37 |
35
|
oveq1d |
|
38 |
37
|
adantr |
|
39 |
36 38
|
prodeq12dv |
|
40 |
|
oveq2 |
|
41 |
40
|
oveq2d |
|
42 |
41
|
adantr |
|
43 |
36 42
|
prodeq12dv |
|
44 |
39 43
|
eqeq12d |
|
45 |
|
prod0 |
|
46 |
|
prod0 |
|
47 |
45 46
|
eqtr4i |
|
48 |
|
simpr |
|
49 |
48
|
oveq1d |
|
50 |
|
nncn |
|
51 |
|
1cnd |
|
52 |
50 51
|
pncand |
|
53 |
52
|
oveq2d |
|
54 |
52
|
oveq1d |
|
55 |
54
|
adantr |
|
56 |
53 55
|
prodeq12dv |
|
57 |
|
elnnuz |
|
58 |
57
|
biimpi |
|
59 |
|
nnnn0 |
|
60 |
|
elfzelz |
|
61 |
|
bccl |
|
62 |
59 60 61
|
syl2an |
|
63 |
62
|
nn0cnd |
|
64 |
|
oveq2 |
|
65 |
58 63 64
|
fprodm1 |
|
66 |
|
bcnn |
|
67 |
59 66
|
syl |
|
68 |
67
|
oveq2d |
|
69 |
|
fzfid |
|
70 |
|
elfzelz |
|
71 |
59 70 61
|
syl2an |
|
72 |
71
|
nn0cnd |
|
73 |
69 72
|
fprodcl |
|
74 |
73
|
mulid1d |
|
75 |
|
fz1ssfz0 |
|
76 |
75
|
sseli |
|
77 |
|
bcm1nt |
|
78 |
76 77
|
sylan2 |
|
79 |
78
|
prodeq2dv |
|
80 |
|
nnm1nn0 |
|
81 |
|
bccl |
|
82 |
80 70 81
|
syl2an |
|
83 |
82
|
nn0cnd |
|
84 |
50
|
adantr |
|
85 |
|
elfznn |
|
86 |
85
|
adantl |
|
87 |
86
|
nnred |
|
88 |
80
|
adantr |
|
89 |
88
|
nn0red |
|
90 |
|
nnre |
|
91 |
90
|
adantr |
|
92 |
|
elfzle2 |
|
93 |
92
|
adantl |
|
94 |
91
|
ltm1d |
|
95 |
87 89 91 93 94
|
lelttrd |
|
96 |
|
simpl |
|
97 |
|
nnsub |
|
98 |
86 96 97
|
syl2anc |
|
99 |
95 98
|
mpbid |
|
100 |
99
|
nncnd |
|
101 |
99
|
nnne0d |
|
102 |
84 100 101
|
divcld |
|
103 |
69 83 102
|
fprodmul |
|
104 |
69 84 100 101
|
fproddiv |
|
105 |
|
fzfi |
|
106 |
|
fprodconst |
|
107 |
105 50 106
|
sylancr |
|
108 |
|
hashfz1 |
|
109 |
80 108
|
syl |
|
110 |
109
|
oveq2d |
|
111 |
107 110
|
eqtr2d |
|
112 |
|
fprodfac |
|
113 |
80 112
|
syl |
|
114 |
|
nnz |
|
115 |
|
1zzd |
|
116 |
80
|
nn0zd |
|
117 |
|
elfznn |
|
118 |
117
|
adantl |
|
119 |
118
|
nncnd |
|
120 |
|
id |
|
121 |
114 115 116 119 120
|
fprodrev |
|
122 |
50 51
|
nncand |
|
123 |
122
|
oveq1d |
|
124 |
123
|
prodeq1d |
|
125 |
113 121 124
|
3eqtrd |
|
126 |
111 125
|
oveq12d |
|
127 |
104 126
|
eqtr4d |
|
128 |
127
|
oveq2d |
|
129 |
79 103 128
|
3eqtrd |
|
130 |
68 74 129
|
3eqtrd |
|
131 |
56 65 130
|
3eqtrd |
|
132 |
131
|
adantr |
|
133 |
53
|
prodeq1d |
|
134 |
|
elfznn |
|
135 |
134
|
adantl |
|
136 |
135
|
nncnd |
|
137 |
135
|
nnne0d |
|
138 |
|
2nn |
|
139 |
138
|
a1i |
|
140 |
139 135
|
nnmulcld |
|
141 |
140
|
nnzd |
|
142 |
|
peano2nn |
|
143 |
142
|
adantr |
|
144 |
143
|
nnzd |
|
145 |
141 144
|
zsubcld |
|
146 |
136 137 145
|
expclzd |
|
147 |
|
id |
|
148 |
|
oveq2 |
|
149 |
148
|
oveq1d |
|
150 |
147 149
|
oveq12d |
|
151 |
58 146 150
|
fprodm1 |
|
152 |
86
|
nncnd |
|
153 |
86
|
nnne0d |
|
154 |
138
|
a1i |
|
155 |
154 86
|
nnmulcld |
|
156 |
155
|
nnzd |
|
157 |
114
|
adantr |
|
158 |
156 157
|
zsubcld |
|
159 |
152 153 158
|
expclzd |
|
160 |
69 159 152 153
|
fproddiv |
|
161 |
155
|
nncnd |
|
162 |
|
1cnd |
|
163 |
161 84 162
|
subsub4d |
|
164 |
163
|
oveq2d |
|
165 |
152 153 158
|
expm1d |
|
166 |
164 165
|
eqtr3d |
|
167 |
166
|
prodeq2dv |
|
168 |
|
fprodfac |
|
169 |
80 168
|
syl |
|
170 |
169
|
oveq2d |
|
171 |
160 167 170
|
3eqtr4d |
|
172 |
138
|
a1i |
|
173 |
|
id |
|
174 |
172 173
|
nnmulcld |
|
175 |
174
|
nncnd |
|
176 |
175 50 51
|
subsub4d |
|
177 |
50
|
2timesd |
|
178 |
50 50 177
|
mvrladdd |
|
179 |
178
|
oveq1d |
|
180 |
176 179
|
eqtr3d |
|
181 |
180
|
oveq2d |
|
182 |
171 181
|
oveq12d |
|
183 |
69 159
|
fprodcl |
|
184 |
|
faccl |
|
185 |
80 184
|
syl |
|
186 |
185
|
nncnd |
|
187 |
50 80
|
expcld |
|
188 |
185
|
nnne0d |
|
189 |
183 186 187 188
|
div32d |
|
190 |
182 189
|
eqtrd |
|
191 |
133 151 190
|
3eqtrd |
|
192 |
191
|
adantr |
|
193 |
49 132 192
|
3eqtr4d |
|
194 |
193
|
ex |
|
195 |
14 24 34 44 47 194
|
nnind |
|