Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = ( 1 − 1 ) ) |
2 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = 0 ) |
4 |
3
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... 0 ) ) |
5 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 ... ( 𝑚 − 1 ) ) = ∅ ) |
7 |
3
|
oveq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑚 − 1 ) C 𝑘 ) = ( 0 C 𝑘 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑚 = 1 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑚 − 1 ) C 𝑘 ) = ( 0 C 𝑘 ) ) |
9 |
6 8
|
prodeq12dv |
⊢ ( 𝑚 = 1 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ∅ ( 0 C 𝑘 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( ( 2 · 𝑘 ) − 𝑚 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑚 = 1 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) ) |
13 |
6 12
|
prodeq12dv |
⊢ ( 𝑚 = 1 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ∏ 𝑘 ∈ ∅ ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) ) |
14 |
9 13
|
eqeq12d |
⊢ ( 𝑚 = 1 → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) ↔ ∏ 𝑘 ∈ ∅ ( 0 C 𝑘 ) = ∏ 𝑘 ∈ ∅ ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
17 |
15
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( 𝑛 − 1 ) C 𝑘 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( 𝑛 − 1 ) C 𝑘 ) ) |
19 |
16 18
|
prodeq12dv |
⊢ ( 𝑚 = 𝑛 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) ) |
20 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · 𝑘 ) − 𝑚 ) = ( ( 2 · 𝑘 ) − 𝑛 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑚 = 𝑛 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) |
23 |
16 22
|
prodeq12dv |
⊢ ( 𝑚 = 𝑛 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) |
24 |
19 23
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) ↔ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) ) |
25 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
27 |
25
|
oveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑚 = ( 𝑛 + 1 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) ) |
29 |
26 28
|
prodeq12dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) ) |
30 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 2 · 𝑘 ) − 𝑚 ) = ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑚 = ( 𝑛 + 1 ) ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
33 |
26 32
|
prodeq12dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
34 |
29 33
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) ↔ ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) ) |
35 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 − 1 ) = ( 𝑁 − 1 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
37 |
35
|
oveq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( 𝑁 − 1 ) C 𝑘 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑚 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( ( 𝑚 − 1 ) C 𝑘 ) = ( ( 𝑁 − 1 ) C 𝑘 ) ) |
39 |
36 38
|
prodeq12dv |
⊢ ( 𝑚 = 𝑁 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝑁 − 1 ) C 𝑘 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( ( 2 · 𝑘 ) − 𝑚 ) = ( ( 2 · 𝑘 ) − 𝑁 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑚 = 𝑁 → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑁 ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑚 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑁 ) ) ) |
43 |
36 42
|
prodeq12dv |
⊢ ( 𝑚 = 𝑁 → ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑁 ) ) ) |
44 |
39 43
|
eqeq12d |
⊢ ( 𝑚 = 𝑁 → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( ( 𝑚 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑚 ) ) ↔ ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝑁 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑁 ) ) ) ) |
45 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( 0 C 𝑘 ) = 1 |
46 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) = 1 |
47 |
45 46
|
eqtr4i |
⊢ ∏ 𝑘 ∈ ∅ ( 0 C 𝑘 ) = ∏ 𝑘 ∈ ∅ ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 1 ) ) |
48 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) |
49 |
48
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
50 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
51 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
52 |
50 51
|
pncand |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
53 |
52
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 1 ... 𝑛 ) ) |
54 |
52
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ( 𝑛 C 𝑘 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ) → ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ( 𝑛 C 𝑘 ) ) |
56 |
53 55
|
prodeq12dv |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑛 C 𝑘 ) ) |
57 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
58 |
57
|
biimpi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
59 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
60 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℤ ) |
61 |
|
bccl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑛 C 𝑘 ) ∈ ℕ0 ) |
62 |
59 60 61
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 C 𝑘 ) ∈ ℕ0 ) |
63 |
62
|
nn0cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 C 𝑘 ) ∈ ℂ ) |
64 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑛 C 𝑘 ) = ( 𝑛 C 𝑛 ) ) |
65 |
58 63 64
|
fprodm1 |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑛 C 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) · ( 𝑛 C 𝑛 ) ) ) |
66 |
|
bcnn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 C 𝑛 ) = 1 ) |
67 |
59 66
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 C 𝑛 ) = 1 ) |
68 |
67
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) · ( 𝑛 C 𝑛 ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) · 1 ) ) |
69 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
70 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ℤ ) |
71 |
59 70 61
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑘 ) ∈ ℕ0 ) |
72 |
71
|
nn0cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑘 ) ∈ ℂ ) |
73 |
69 72
|
fprodcl |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) ∈ ℂ ) |
74 |
73
|
mulid1d |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) · 1 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) ) |
75 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑛 − 1 ) ) ⊆ ( 0 ... ( 𝑛 − 1 ) ) |
76 |
75
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) |
77 |
|
bcm1nt |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑘 ) = ( ( ( 𝑛 − 1 ) C 𝑘 ) · ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) ) |
78 |
76 77
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑘 ) = ( ( ( 𝑛 − 1 ) C 𝑘 ) · ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) ) |
79 |
78
|
prodeq2dv |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( ( 𝑛 − 1 ) C 𝑘 ) · ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) ) |
80 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
81 |
|
bccl |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 − 1 ) C 𝑘 ) ∈ ℕ0 ) |
82 |
80 70 81
|
syl2an |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 − 1 ) C 𝑘 ) ∈ ℕ0 ) |
83 |
82
|
nn0cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 − 1 ) C 𝑘 ) ∈ ℂ ) |
84 |
50
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑛 ∈ ℂ ) |
85 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ℕ ) |
86 |
85
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℕ ) |
87 |
86
|
nnred |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℝ ) |
88 |
80
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
89 |
88
|
nn0red |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
90 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
91 |
90
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑛 ∈ ℝ ) |
92 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑘 ≤ ( 𝑛 − 1 ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 ≤ ( 𝑛 − 1 ) ) |
94 |
91
|
ltm1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 1 ) < 𝑛 ) |
95 |
87 89 91 93 94
|
lelttrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 < 𝑛 ) |
96 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑛 ∈ ℕ ) |
97 |
|
nnsub |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑘 < 𝑛 ↔ ( 𝑛 − 𝑘 ) ∈ ℕ ) ) |
98 |
86 96 97
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑘 < 𝑛 ↔ ( 𝑛 − 𝑘 ) ∈ ℕ ) ) |
99 |
95 98
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 𝑘 ) ∈ ℕ ) |
100 |
99
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 𝑘 ) ∈ ℂ ) |
101 |
99
|
nnne0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 − 𝑘 ) ≠ 0 ) |
102 |
84 100 101
|
divcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 / ( 𝑛 − 𝑘 ) ) ∈ ℂ ) |
103 |
69 83 102
|
fprodmul |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( ( 𝑛 − 1 ) C 𝑘 ) · ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) ) |
104 |
69 84 100 101
|
fproddiv |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 / ( 𝑛 − 𝑘 ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑛 / ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) ) ) |
105 |
|
fzfi |
⊢ ( 1 ... ( 𝑛 − 1 ) ) ∈ Fin |
106 |
|
fprodconst |
⊢ ( ( ( 1 ... ( 𝑛 − 1 ) ) ∈ Fin ∧ 𝑛 ∈ ℂ ) → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑛 = ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛 − 1 ) ) ) ) ) |
107 |
105 50 106
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑛 = ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛 − 1 ) ) ) ) ) |
108 |
|
hashfz1 |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑛 − 1 ) ) ) = ( 𝑛 − 1 ) ) |
109 |
80 108
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ♯ ‘ ( 1 ... ( 𝑛 − 1 ) ) ) = ( 𝑛 − 1 ) ) |
110 |
109
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛 − 1 ) ) ) ) = ( 𝑛 ↑ ( 𝑛 − 1 ) ) ) |
111 |
107 110
|
eqtr2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 𝑛 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑛 ) |
112 |
|
fprodfac |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑛 − 1 ) ) = ∏ 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑗 ) |
113 |
80 112
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) = ∏ 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑗 ) |
114 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
115 |
|
1zzd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℤ ) |
116 |
80
|
nn0zd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℤ ) |
117 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑗 ∈ ℕ ) |
118 |
117
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑗 ∈ ℕ ) |
119 |
118
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑗 ∈ ℂ ) |
120 |
|
id |
⊢ ( 𝑗 = ( 𝑛 − 𝑘 ) → 𝑗 = ( 𝑛 − 𝑘 ) ) |
121 |
114 115 116 119 120
|
fprodrev |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑗 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑗 = ∏ 𝑘 ∈ ( ( 𝑛 − ( 𝑛 − 1 ) ) ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) ) |
122 |
50 51
|
nncand |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − ( 𝑛 − 1 ) ) = 1 ) |
123 |
122
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 − ( 𝑛 − 1 ) ) ... ( 𝑛 − 1 ) ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
124 |
123
|
prodeq1d |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( ( 𝑛 − ( 𝑛 − 1 ) ) ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) ) |
125 |
113 121 124
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) ) |
126 |
111 125
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑛 / ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 − 𝑘 ) ) ) |
127 |
104 126
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 / ( 𝑛 − 𝑘 ) ) = ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) |
128 |
127
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 / ( 𝑛 − 𝑘 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
129 |
79 103 128
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
130 |
68 74 129
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑛 C 𝑘 ) · ( 𝑛 C 𝑛 ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
131 |
56 65 130
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
132 |
131
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
133 |
53
|
prodeq1d |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ∏ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
134 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
135 |
134
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
136 |
135
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℂ ) |
137 |
135
|
nnne0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ≠ 0 ) |
138 |
|
2nn |
⊢ 2 ∈ ℕ |
139 |
138
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 2 ∈ ℕ ) |
140 |
139 135
|
nnmulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2 · 𝑘 ) ∈ ℕ ) |
141 |
140
|
nnzd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2 · 𝑘 ) ∈ ℤ ) |
142 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
143 |
142
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
144 |
143
|
nnzd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
145 |
141 144
|
zsubcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ∈ ℤ ) |
146 |
136 137 145
|
expclzd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
147 |
|
id |
⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) |
148 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) |
149 |
148
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) |
150 |
147 149
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( 𝑛 ↑ ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) ) |
151 |
58 146 150
|
fprodm1 |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) · ( 𝑛 ↑ ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) ) ) |
152 |
86
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 ∈ ℂ ) |
153 |
86
|
nnne0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑘 ≠ 0 ) |
154 |
138
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 2 ∈ ℕ ) |
155 |
154 86
|
nnmulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℕ ) |
156 |
155
|
nnzd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℤ ) |
157 |
114
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑛 ∈ ℤ ) |
158 |
156 157
|
zsubcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( ( 2 · 𝑘 ) − 𝑛 ) ∈ ℤ ) |
159 |
152 153 158
|
expclzd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ∈ ℂ ) |
160 |
69 159 152 153
|
fproddiv |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / 𝑘 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑘 ) ) |
161 |
155
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
162 |
|
1cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 1 ∈ ℂ ) |
163 |
161 84 162
|
subsub4d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( ( ( 2 · 𝑘 ) − 𝑛 ) − 1 ) = ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) |
164 |
163
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑘 ↑ ( ( ( 2 · 𝑘 ) − 𝑛 ) − 1 ) ) = ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
165 |
152 153 158
|
expm1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑘 ↑ ( ( ( 2 · 𝑘 ) − 𝑛 ) − 1 ) ) = ( ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / 𝑘 ) ) |
166 |
164 165
|
eqtr3d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / 𝑘 ) ) |
167 |
166
|
prodeq2dv |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / 𝑘 ) ) |
168 |
|
fprodfac |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑛 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑘 ) |
169 |
80 168
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑘 ) |
170 |
169
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) 𝑘 ) ) |
171 |
160 167 170
|
3eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) |
172 |
138
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
173 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
174 |
172 173
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
175 |
174
|
nncnd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
176 |
175 50 51
|
subsub4d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) − 𝑛 ) − 1 ) = ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) |
177 |
50
|
2timesd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) = ( 𝑛 + 𝑛 ) ) |
178 |
50 50 177
|
mvrladdd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) − 𝑛 ) = 𝑛 ) |
179 |
178
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) − 𝑛 ) − 1 ) = ( 𝑛 − 1 ) ) |
180 |
176 179
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) = ( 𝑛 − 1 ) ) |
181 |
180
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) = ( 𝑛 ↑ ( 𝑛 − 1 ) ) ) |
182 |
171 181
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) · ( 𝑛 ↑ ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) ) = ( ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) · ( 𝑛 ↑ ( 𝑛 − 1 ) ) ) ) |
183 |
69 159
|
fprodcl |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ∈ ℂ ) |
184 |
|
faccl |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑛 − 1 ) ) ∈ ℕ ) |
185 |
80 184
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) ∈ ℕ ) |
186 |
185
|
nncnd |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
187 |
50 80
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
188 |
185
|
nnne0d |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 𝑛 − 1 ) ) ≠ 0 ) |
189 |
183 186 187 188
|
div32d |
⊢ ( 𝑛 ∈ ℕ → ( ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) · ( 𝑛 ↑ ( 𝑛 − 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
190 |
182 189
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) · ( 𝑛 ↑ ( ( 2 · 𝑛 ) − ( 𝑛 + 1 ) ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
191 |
133 151 190
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
192 |
191
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) = ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) · ( ( 𝑛 ↑ ( 𝑛 − 1 ) ) / ( ! ‘ ( 𝑛 − 1 ) ) ) ) ) |
193 |
49 132 192
|
3eqtr4d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) ) → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) |
194 |
193
|
ex |
⊢ ( 𝑛 ∈ ℕ → ( ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( ( 𝑛 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑛 ) ) → ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( ( ( 𝑛 + 1 ) − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − ( 𝑛 + 1 ) ) ) ) ) |
195 |
14 24 34 44 47 194
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝑁 − 1 ) C 𝑘 ) = ∏ 𝑘 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑘 ↑ ( ( 2 · 𝑘 ) − 𝑁 ) ) ) |