| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 2 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  0 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑚  =  1  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... 0 ) ) | 
						
							| 5 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 1 ... ( 𝑚  −  1 ) )  =  ∅ ) | 
						
							| 7 | 3 | oveq1d | ⊢ ( 𝑚  =  1  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( 0 C 𝑘 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑚  =  1  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( 0 C 𝑘 ) ) | 
						
							| 9 | 6 8 | prodeq12dv | ⊢ ( 𝑚  =  1  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ∅ ( 0 C 𝑘 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑚  =  1  →  ( ( 2  ·  𝑘 )  −  𝑚 )  =  ( ( 2  ·  𝑘 )  −  1 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝑚  =  1  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑚  =  1  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 13 | 6 12 | prodeq12dv | ⊢ ( 𝑚  =  1  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ∏ 𝑘  ∈  ∅ ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 14 | 9 13 | eqeq12d | ⊢ ( 𝑚  =  1  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  ↔  ∏ 𝑘  ∈  ∅ ( 0 C 𝑘 )  =  ∏ 𝑘  ∈  ∅ ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( 𝑛  −  1 ) ) ) | 
						
							| 17 | 15 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( 𝑛  −  1 ) C 𝑘 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( 𝑛  −  1 ) C 𝑘 ) ) | 
						
							| 19 | 16 18 | prodeq12dv | ⊢ ( 𝑚  =  𝑛  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  𝑘 )  −  𝑚 )  =  ( ( 2  ·  𝑘 )  −  𝑛 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑚  =  𝑛  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) ) | 
						
							| 23 | 16 22 | prodeq12dv | ⊢ ( 𝑚  =  𝑛  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) ) | 
						
							| 24 | 19 23 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  ↔  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑚  −  1 )  =  ( ( 𝑛  +  1 )  −  1 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ) | 
						
							| 27 | 25 | oveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 ) ) | 
						
							| 29 | 26 28 | prodeq12dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 2  ·  𝑘 )  −  𝑚 )  =  ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑚  =  ( 𝑛  +  1 )  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 33 | 26 32 | prodeq12dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 34 | 29 33 | eqeq12d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  ↔  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑚  =  𝑁  →  ( 𝑚  −  1 )  =  ( 𝑁  −  1 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑚  =  𝑁  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 37 | 35 | oveq1d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( 𝑁  −  1 ) C 𝑘 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑚  =  𝑁  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( ( 𝑚  −  1 ) C 𝑘 )  =  ( ( 𝑁  −  1 ) C 𝑘 ) ) | 
						
							| 39 | 36 38 | prodeq12dv | ⊢ ( 𝑚  =  𝑁  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝑁  −  1 ) C 𝑘 ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑚  =  𝑁  →  ( ( 2  ·  𝑘 )  −  𝑚 )  =  ( ( 2  ·  𝑘 )  −  𝑁 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑚  =  𝑁  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑁 ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝑚  =  𝑁  ∧  𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑁 ) ) ) | 
						
							| 43 | 36 42 | prodeq12dv | ⊢ ( 𝑚  =  𝑁  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑁 ) ) ) | 
						
							| 44 | 39 43 | eqeq12d | ⊢ ( 𝑚  =  𝑁  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( ( 𝑚  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑚 ) )  ↔  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝑁  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑁 ) ) ) ) | 
						
							| 45 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( 0 C 𝑘 )  =  1 | 
						
							| 46 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) )  =  1 | 
						
							| 47 | 45 46 | eqtr4i | ⊢ ∏ 𝑘  ∈  ∅ ( 0 C 𝑘 )  =  ∏ 𝑘  ∈  ∅ ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  1 ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) )  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) )  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 50 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 51 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 52 | 50 51 | pncand | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) )  =  ( 1 ... 𝑛 ) ) | 
						
							| 54 | 52 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ( 𝑛 C 𝑘 ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) )  →  ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ( 𝑛 C 𝑘 ) ) | 
						
							| 56 | 53 55 | prodeq12dv | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑛 C 𝑘 ) ) | 
						
							| 57 |  | elnnuz | ⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 58 | 57 | biimpi | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 59 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 60 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℤ ) | 
						
							| 61 |  | bccl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑘  ∈  ℤ )  →  ( 𝑛 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 62 | 59 60 61 | syl2an | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑛 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 63 | 62 | nn0cnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑛 C 𝑘 )  ∈  ℂ ) | 
						
							| 64 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑛 C 𝑘 )  =  ( 𝑛 C 𝑛 ) ) | 
						
							| 65 | 58 63 64 | fprodm1 | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑛 C 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ·  ( 𝑛 C 𝑛 ) ) ) | 
						
							| 66 |  | bcnn | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛 C 𝑛 )  =  1 ) | 
						
							| 67 | 59 66 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 C 𝑛 )  =  1 ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ·  ( 𝑛 C 𝑛 ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ·  1 ) ) | 
						
							| 69 |  | fzfid | ⊢ ( 𝑛  ∈  ℕ  →  ( 1 ... ( 𝑛  −  1 ) )  ∈  Fin ) | 
						
							| 70 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 71 | 59 70 61 | syl2an | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 72 | 71 | nn0cnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛 C 𝑘 )  ∈  ℂ ) | 
						
							| 73 | 69 72 | fprodcl | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ∈  ℂ ) | 
						
							| 74 | 73 | mulridd | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ·  1 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 ) ) | 
						
							| 75 |  | fz1ssfz0 | ⊢ ( 1 ... ( 𝑛  −  1 ) )  ⊆  ( 0 ... ( 𝑛  −  1 ) ) | 
						
							| 76 | 75 | sseli | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) ) | 
						
							| 77 |  | bcm1nt | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛 C 𝑘 )  =  ( ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( 𝑛  /  ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 78 | 76 77 | sylan2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛 C 𝑘 )  =  ( ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( 𝑛  /  ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 79 | 78 | prodeq2dv | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( 𝑛  /  ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 80 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 81 |  | bccl | ⊢ ( ( ( 𝑛  −  1 )  ∈  ℕ0  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑛  −  1 ) C 𝑘 )  ∈  ℕ0 ) | 
						
							| 82 | 80 70 81 | syl2an | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( ( 𝑛  −  1 ) C 𝑘 )  ∈  ℕ0 ) | 
						
							| 83 | 82 | nn0cnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( ( 𝑛  −  1 ) C 𝑘 )  ∈  ℂ ) | 
						
							| 84 | 50 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 85 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 87 | 86 | nnred | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 88 | 80 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 89 | 88 | nn0red | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 90 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 92 |  | elfzle2 | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑘  ≤  ( 𝑛  −  1 ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  ≤  ( 𝑛  −  1 ) ) | 
						
							| 94 | 91 | ltm1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  1 )  <  𝑛 ) | 
						
							| 95 | 87 89 91 93 94 | lelttrd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  <  𝑛 ) | 
						
							| 96 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 97 |  | nnsub | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  <  𝑛  ↔  ( 𝑛  −  𝑘 )  ∈  ℕ ) ) | 
						
							| 98 | 86 96 97 | syl2anc | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑘  <  𝑛  ↔  ( 𝑛  −  𝑘 )  ∈  ℕ ) ) | 
						
							| 99 | 95 98 | mpbid | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  𝑘 )  ∈  ℕ ) | 
						
							| 100 | 99 | nncnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  𝑘 )  ∈  ℂ ) | 
						
							| 101 | 99 | nnne0d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  −  𝑘 )  ≠  0 ) | 
						
							| 102 | 84 100 101 | divcld | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑛  /  ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 103 | 69 83 102 | fprodmul | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( 𝑛  /  ( 𝑛  −  𝑘 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  /  ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 104 | 69 84 100 101 | fproddiv | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  /  ( 𝑛  −  𝑘 ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑛  /  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 ) ) ) | 
						
							| 105 |  | fzfi | ⊢ ( 1 ... ( 𝑛  −  1 ) )  ∈  Fin | 
						
							| 106 |  | fprodconst | ⊢ ( ( ( 1 ... ( 𝑛  −  1 ) )  ∈  Fin  ∧  𝑛  ∈  ℂ )  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑛  =  ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 107 | 105 50 106 | sylancr | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑛  =  ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 108 |  | hashfz1 | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( 𝑛  −  1 ) ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 109 | 80 108 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ♯ ‘ ( 1 ... ( 𝑛  −  1 ) ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 110 | 109 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ ( ♯ ‘ ( 1 ... ( 𝑛  −  1 ) ) ) )  =  ( 𝑛 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 111 | 107 110 | eqtr2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ ( 𝑛  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑛 ) | 
						
							| 112 |  | fprodfac | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( ! ‘ ( 𝑛  −  1 ) )  =  ∏ 𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑗 ) | 
						
							| 113 | 80 112 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  =  ∏ 𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑗 ) | 
						
							| 114 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 115 |  | 1zzd | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 116 | 80 | nn0zd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℤ ) | 
						
							| 117 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 119 | 118 | nncnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑗  ∈  ℂ ) | 
						
							| 120 |  | id | ⊢ ( 𝑗  =  ( 𝑛  −  𝑘 )  →  𝑗  =  ( 𝑛  −  𝑘 ) ) | 
						
							| 121 | 114 115 116 119 120 | fprodrev | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑗  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑗  =  ∏ 𝑘  ∈  ( ( 𝑛  −  ( 𝑛  −  1 ) ) ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 ) ) | 
						
							| 122 | 50 51 | nncand | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  ( 𝑛  −  1 ) )  =  1 ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛  −  ( 𝑛  −  1 ) ) ... ( 𝑛  −  1 ) )  =  ( 1 ... ( 𝑛  −  1 ) ) ) | 
						
							| 124 | 123 | prodeq1d | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( ( 𝑛  −  ( 𝑛  −  1 ) ) ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 ) ) | 
						
							| 125 | 113 121 124 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 ) ) | 
						
							| 126 | 111 125 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑛  /  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  −  𝑘 ) ) ) | 
						
							| 127 | 104 126 | eqtr4d | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  /  ( 𝑛  −  𝑘 ) )  =  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 128 | 127 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛  /  ( 𝑛  −  𝑘 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 129 | 79 103 128 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 130 | 68 74 129 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑛 C 𝑘 )  ·  ( 𝑛 C 𝑛 ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 131 | 56 65 130 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) )  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 133 | 53 | prodeq1d | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ∏ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 134 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝑛 )  →  𝑘  ∈  ℕ ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 136 | 135 | nncnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 137 | 135 | nnne0d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ≠  0 ) | 
						
							| 138 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 139 | 138 | a1i | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  2  ∈  ℕ ) | 
						
							| 140 | 139 135 | nnmulcld | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 141 | 140 | nnzd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 2  ·  𝑘 )  ∈  ℤ ) | 
						
							| 142 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 144 | 143 | nnzd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑛  +  1 )  ∈  ℤ ) | 
						
							| 145 | 141 144 | zsubcld | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) )  ∈  ℤ ) | 
						
							| 146 | 136 137 145 | expclzd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 147 |  | id | ⊢ ( 𝑘  =  𝑛  →  𝑘  =  𝑛 ) | 
						
							| 148 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 149 | 148 | oveq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) )  =  ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) | 
						
							| 150 | 147 149 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( 𝑛 ↑ ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 151 | 58 146 150 | fprodm1 | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  ·  ( 𝑛 ↑ ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 152 | 86 | nncnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  ∈  ℂ ) | 
						
							| 153 | 86 | nnne0d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑘  ≠  0 ) | 
						
							| 154 | 138 | a1i | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  2  ∈  ℕ ) | 
						
							| 155 | 154 86 | nnmulcld | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 156 | 155 | nnzd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 2  ·  𝑘 )  ∈  ℤ ) | 
						
							| 157 | 114 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 158 | 156 157 | zsubcld | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( ( 2  ·  𝑘 )  −  𝑛 )  ∈  ℤ ) | 
						
							| 159 | 152 153 158 | expclzd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ∈  ℂ ) | 
						
							| 160 | 69 159 152 153 | fproddiv | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  𝑘 )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑘 ) ) | 
						
							| 161 | 155 | nncnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 162 |  | 1cnd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 163 | 161 84 162 | subsub4d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( ( ( 2  ·  𝑘 )  −  𝑛 )  −  1 )  =  ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) | 
						
							| 164 | 163 | oveq2d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑘 ↑ ( ( ( 2  ·  𝑘 )  −  𝑛 )  −  1 ) )  =  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 165 | 152 153 158 | expm1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑘 ↑ ( ( ( 2  ·  𝑘 )  −  𝑛 )  −  1 ) )  =  ( ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  𝑘 ) ) | 
						
							| 166 | 164 165 | eqtr3d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  𝑘 ) ) | 
						
							| 167 | 166 | prodeq2dv | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  𝑘 ) ) | 
						
							| 168 |  | fprodfac | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( ! ‘ ( 𝑛  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑘 ) | 
						
							| 169 | 80 168 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑘 ) | 
						
							| 170 | 169 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) 𝑘 ) ) | 
						
							| 171 | 160 167 170 | 3eqtr4d | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 172 | 138 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 173 |  | id | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ ) | 
						
							| 174 | 172 173 | nnmulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 175 | 174 | nncnd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 176 | 175 50 51 | subsub4d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 2  ·  𝑛 )  −  𝑛 )  −  1 )  =  ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) | 
						
							| 177 | 50 | 2timesd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  =  ( 𝑛  +  𝑛 ) ) | 
						
							| 178 | 50 50 177 | mvrladdd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  −  𝑛 )  =  𝑛 ) | 
						
							| 179 | 178 | oveq1d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 2  ·  𝑛 )  −  𝑛 )  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 180 | 176 179 | eqtr3d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) )  =  ( 𝑛  −  1 ) ) | 
						
							| 181 | 180 | oveq2d | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) )  =  ( 𝑛 ↑ ( 𝑛  −  1 ) ) ) | 
						
							| 182 | 171 181 | oveq12d | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  ·  ( 𝑛 ↑ ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) )  =  ( ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) )  ·  ( 𝑛 ↑ ( 𝑛  −  1 ) ) ) ) | 
						
							| 183 | 69 159 | fprodcl | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ∈  ℂ ) | 
						
							| 184 |  | faccl | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( ! ‘ ( 𝑛  −  1 ) )  ∈  ℕ ) | 
						
							| 185 | 80 184 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  ∈  ℕ ) | 
						
							| 186 | 185 | nncnd | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 187 | 50 80 | expcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ ( 𝑛  −  1 ) )  ∈  ℂ ) | 
						
							| 188 | 185 | nnne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( ! ‘ ( 𝑛  −  1 ) )  ≠  0 ) | 
						
							| 189 | 183 186 187 188 | div32d | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) )  ·  ( 𝑛 ↑ ( 𝑛  −  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 190 | 182 189 | eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  ·  ( 𝑛 ↑ ( ( 2  ·  𝑛 )  −  ( 𝑛  +  1 ) ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 191 | 133 151 190 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 192 | 191 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) )  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) )  =  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  ·  ( ( 𝑛 ↑ ( 𝑛  −  1 ) )  /  ( ! ‘ ( 𝑛  −  1 ) ) ) ) ) | 
						
							| 193 | 49 132 192 | 3eqtr4d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) ) )  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) | 
						
							| 194 | 193 | ex | ⊢ ( 𝑛  ∈  ℕ  →  ( ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( ( 𝑛  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑛 ) )  →  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( ( ( 𝑛  +  1 )  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 195 | 14 24 34 44 47 194 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( ( 𝑁  −  1 ) C 𝑘 )  =  ∏ 𝑘  ∈  ( 1 ... ( 𝑁  −  1 ) ) ( 𝑘 ↑ ( ( 2  ·  𝑘 )  −  𝑁 ) ) ) |