| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 2 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 4 | 3 | oveq2d |  |-  ( m = 1 -> ( 1 ... ( m - 1 ) ) = ( 1 ... 0 ) ) | 
						
							| 5 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( m = 1 -> ( 1 ... ( m - 1 ) ) = (/) ) | 
						
							| 7 | 3 | oveq1d |  |-  ( m = 1 -> ( ( m - 1 ) _C k ) = ( 0 _C k ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( m = 1 /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( m - 1 ) _C k ) = ( 0 _C k ) ) | 
						
							| 9 | 6 8 | prodeq12dv |  |-  ( m = 1 -> prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. (/) ( 0 _C k ) ) | 
						
							| 10 |  | oveq2 |  |-  ( m = 1 -> ( ( 2 x. k ) - m ) = ( ( 2 x. k ) - 1 ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( m = 1 -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( m = 1 /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 13 | 6 12 | prodeq12dv |  |-  ( m = 1 -> prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) = prod_ k e. (/) ( k ^ ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 14 | 9 13 | eqeq12d |  |-  ( m = 1 -> ( prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) <-> prod_ k e. (/) ( 0 _C k ) = prod_ k e. (/) ( k ^ ( ( 2 x. k ) - 1 ) ) ) ) | 
						
							| 15 |  | oveq1 |  |-  ( m = n -> ( m - 1 ) = ( n - 1 ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( m = n -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( n - 1 ) ) ) | 
						
							| 17 | 15 | oveq1d |  |-  ( m = n -> ( ( m - 1 ) _C k ) = ( ( n - 1 ) _C k ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( m = n /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( m - 1 ) _C k ) = ( ( n - 1 ) _C k ) ) | 
						
							| 19 | 16 18 | prodeq12dv |  |-  ( m = n -> prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) ) | 
						
							| 20 |  | oveq2 |  |-  ( m = n -> ( ( 2 x. k ) - m ) = ( ( 2 x. k ) - n ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( m = n -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - n ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( m = n /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - n ) ) ) | 
						
							| 23 | 16 22 | prodeq12dv |  |-  ( m = n -> prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) | 
						
							| 24 | 19 23 | eqeq12d |  |-  ( m = n -> ( prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) <-> prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) ) | 
						
							| 25 |  | oveq1 |  |-  ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( m = ( n + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( n + 1 ) - 1 ) ) ) | 
						
							| 27 | 25 | oveq1d |  |-  ( m = ( n + 1 ) -> ( ( m - 1 ) _C k ) = ( ( ( n + 1 ) - 1 ) _C k ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( m = ( n + 1 ) /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( m - 1 ) _C k ) = ( ( ( n + 1 ) - 1 ) _C k ) ) | 
						
							| 29 | 26 28 | prodeq12dv |  |-  ( m = ( n + 1 ) -> prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) ) | 
						
							| 30 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( ( 2 x. k ) - m ) = ( ( 2 x. k ) - ( n + 1 ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( m = ( n + 1 ) -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( m = ( n + 1 ) /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 33 | 26 32 | prodeq12dv |  |-  ( m = ( n + 1 ) -> prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) = prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 34 | 29 33 | eqeq12d |  |-  ( m = ( n + 1 ) -> ( prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) <-> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) ) | 
						
							| 35 |  | oveq1 |  |-  ( m = N -> ( m - 1 ) = ( N - 1 ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( m = N -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 37 | 35 | oveq1d |  |-  ( m = N -> ( ( m - 1 ) _C k ) = ( ( N - 1 ) _C k ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( m = N /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( ( m - 1 ) _C k ) = ( ( N - 1 ) _C k ) ) | 
						
							| 39 | 36 38 | prodeq12dv |  |-  ( m = N -> prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( ( N - 1 ) _C k ) ) | 
						
							| 40 |  | oveq2 |  |-  ( m = N -> ( ( 2 x. k ) - m ) = ( ( 2 x. k ) - N ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( m = N -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - N ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( m = N /\ k e. ( 1 ... ( m - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - m ) ) = ( k ^ ( ( 2 x. k ) - N ) ) ) | 
						
							| 43 | 36 42 | prodeq12dv |  |-  ( m = N -> prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( k ^ ( ( 2 x. k ) - N ) ) ) | 
						
							| 44 | 39 43 | eqeq12d |  |-  ( m = N -> ( prod_ k e. ( 1 ... ( m - 1 ) ) ( ( m - 1 ) _C k ) = prod_ k e. ( 1 ... ( m - 1 ) ) ( k ^ ( ( 2 x. k ) - m ) ) <-> prod_ k e. ( 1 ... ( N - 1 ) ) ( ( N - 1 ) _C k ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( k ^ ( ( 2 x. k ) - N ) ) ) ) | 
						
							| 45 |  | prod0 |  |-  prod_ k e. (/) ( 0 _C k ) = 1 | 
						
							| 46 |  | prod0 |  |-  prod_ k e. (/) ( k ^ ( ( 2 x. k ) - 1 ) ) = 1 | 
						
							| 47 | 45 46 | eqtr4i |  |-  prod_ k e. (/) ( 0 _C k ) = prod_ k e. (/) ( k ^ ( ( 2 x. k ) - 1 ) ) | 
						
							| 48 |  | simpr |  |-  ( ( n e. NN /\ prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) -> prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( n e. NN /\ prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 50 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 51 |  | 1cnd |  |-  ( n e. NN -> 1 e. CC ) | 
						
							| 52 | 50 51 | pncand |  |-  ( n e. NN -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 53 | 52 | oveq2d |  |-  ( n e. NN -> ( 1 ... ( ( n + 1 ) - 1 ) ) = ( 1 ... n ) ) | 
						
							| 54 | 52 | oveq1d |  |-  ( n e. NN -> ( ( ( n + 1 ) - 1 ) _C k ) = ( n _C k ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ) -> ( ( ( n + 1 ) - 1 ) _C k ) = ( n _C k ) ) | 
						
							| 56 | 53 55 | prodeq12dv |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = prod_ k e. ( 1 ... n ) ( n _C k ) ) | 
						
							| 57 |  | elnnuz |  |-  ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) | 
						
							| 58 | 57 | biimpi |  |-  ( n e. NN -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 59 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 60 |  | elfzelz |  |-  ( k e. ( 1 ... n ) -> k e. ZZ ) | 
						
							| 61 |  | bccl |  |-  ( ( n e. NN0 /\ k e. ZZ ) -> ( n _C k ) e. NN0 ) | 
						
							| 62 | 59 60 61 | syl2an |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( n _C k ) e. NN0 ) | 
						
							| 63 | 62 | nn0cnd |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( n _C k ) e. CC ) | 
						
							| 64 |  | oveq2 |  |-  ( k = n -> ( n _C k ) = ( n _C n ) ) | 
						
							| 65 | 58 63 64 | fprodm1 |  |-  ( n e. NN -> prod_ k e. ( 1 ... n ) ( n _C k ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) x. ( n _C n ) ) ) | 
						
							| 66 |  | bcnn |  |-  ( n e. NN0 -> ( n _C n ) = 1 ) | 
						
							| 67 | 59 66 | syl |  |-  ( n e. NN -> ( n _C n ) = 1 ) | 
						
							| 68 | 67 | oveq2d |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) x. ( n _C n ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) x. 1 ) ) | 
						
							| 69 |  | fzfid |  |-  ( n e. NN -> ( 1 ... ( n - 1 ) ) e. Fin ) | 
						
							| 70 |  | elfzelz |  |-  ( k e. ( 1 ... ( n - 1 ) ) -> k e. ZZ ) | 
						
							| 71 | 59 70 61 | syl2an |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n _C k ) e. NN0 ) | 
						
							| 72 | 71 | nn0cnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n _C k ) e. CC ) | 
						
							| 73 | 69 72 | fprodcl |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) e. CC ) | 
						
							| 74 | 73 | mulridd |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) x. 1 ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) ) | 
						
							| 75 |  | fz1ssfz0 |  |-  ( 1 ... ( n - 1 ) ) C_ ( 0 ... ( n - 1 ) ) | 
						
							| 76 | 75 | sseli |  |-  ( k e. ( 1 ... ( n - 1 ) ) -> k e. ( 0 ... ( n - 1 ) ) ) | 
						
							| 77 |  | bcm1nt |  |-  ( ( n e. NN /\ k e. ( 0 ... ( n - 1 ) ) ) -> ( n _C k ) = ( ( ( n - 1 ) _C k ) x. ( n / ( n - k ) ) ) ) | 
						
							| 78 | 76 77 | sylan2 |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n _C k ) = ( ( ( n - 1 ) _C k ) x. ( n / ( n - k ) ) ) ) | 
						
							| 79 | 78 | prodeq2dv |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( ( ( n - 1 ) _C k ) x. ( n / ( n - k ) ) ) ) | 
						
							| 80 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 81 |  | bccl |  |-  ( ( ( n - 1 ) e. NN0 /\ k e. ZZ ) -> ( ( n - 1 ) _C k ) e. NN0 ) | 
						
							| 82 | 80 70 81 | syl2an |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( ( n - 1 ) _C k ) e. NN0 ) | 
						
							| 83 | 82 | nn0cnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( ( n - 1 ) _C k ) e. CC ) | 
						
							| 84 | 50 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> n e. CC ) | 
						
							| 85 |  | elfznn |  |-  ( k e. ( 1 ... ( n - 1 ) ) -> k e. NN ) | 
						
							| 86 | 85 | adantl |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k e. NN ) | 
						
							| 87 | 86 | nnred |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k e. RR ) | 
						
							| 88 | 80 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - 1 ) e. NN0 ) | 
						
							| 89 | 88 | nn0red |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - 1 ) e. RR ) | 
						
							| 90 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 91 | 90 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> n e. RR ) | 
						
							| 92 |  | elfzle2 |  |-  ( k e. ( 1 ... ( n - 1 ) ) -> k <_ ( n - 1 ) ) | 
						
							| 93 | 92 | adantl |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k <_ ( n - 1 ) ) | 
						
							| 94 | 91 | ltm1d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - 1 ) < n ) | 
						
							| 95 | 87 89 91 93 94 | lelttrd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k < n ) | 
						
							| 96 |  | simpl |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> n e. NN ) | 
						
							| 97 |  | nnsub |  |-  ( ( k e. NN /\ n e. NN ) -> ( k < n <-> ( n - k ) e. NN ) ) | 
						
							| 98 | 86 96 97 | syl2anc |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( k < n <-> ( n - k ) e. NN ) ) | 
						
							| 99 | 95 98 | mpbid |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - k ) e. NN ) | 
						
							| 100 | 99 | nncnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - k ) e. CC ) | 
						
							| 101 | 99 | nnne0d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n - k ) =/= 0 ) | 
						
							| 102 | 84 100 101 | divcld |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( n / ( n - k ) ) e. CC ) | 
						
							| 103 | 69 83 102 | fprodmul |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( ( ( n - 1 ) _C k ) x. ( n / ( n - k ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. prod_ k e. ( 1 ... ( n - 1 ) ) ( n / ( n - k ) ) ) ) | 
						
							| 104 | 69 84 100 101 | fproddiv |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( n / ( n - k ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) n / prod_ k e. ( 1 ... ( n - 1 ) ) ( n - k ) ) ) | 
						
							| 105 |  | fzfi |  |-  ( 1 ... ( n - 1 ) ) e. Fin | 
						
							| 106 |  | fprodconst |  |-  ( ( ( 1 ... ( n - 1 ) ) e. Fin /\ n e. CC ) -> prod_ k e. ( 1 ... ( n - 1 ) ) n = ( n ^ ( # ` ( 1 ... ( n - 1 ) ) ) ) ) | 
						
							| 107 | 105 50 106 | sylancr |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) n = ( n ^ ( # ` ( 1 ... ( n - 1 ) ) ) ) ) | 
						
							| 108 |  | hashfz1 |  |-  ( ( n - 1 ) e. NN0 -> ( # ` ( 1 ... ( n - 1 ) ) ) = ( n - 1 ) ) | 
						
							| 109 | 80 108 | syl |  |-  ( n e. NN -> ( # ` ( 1 ... ( n - 1 ) ) ) = ( n - 1 ) ) | 
						
							| 110 | 109 | oveq2d |  |-  ( n e. NN -> ( n ^ ( # ` ( 1 ... ( n - 1 ) ) ) ) = ( n ^ ( n - 1 ) ) ) | 
						
							| 111 | 107 110 | eqtr2d |  |-  ( n e. NN -> ( n ^ ( n - 1 ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) n ) | 
						
							| 112 |  | fprodfac |  |-  ( ( n - 1 ) e. NN0 -> ( ! ` ( n - 1 ) ) = prod_ j e. ( 1 ... ( n - 1 ) ) j ) | 
						
							| 113 | 80 112 | syl |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) = prod_ j e. ( 1 ... ( n - 1 ) ) j ) | 
						
							| 114 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 115 |  | 1zzd |  |-  ( n e. NN -> 1 e. ZZ ) | 
						
							| 116 | 80 | nn0zd |  |-  ( n e. NN -> ( n - 1 ) e. ZZ ) | 
						
							| 117 |  | elfznn |  |-  ( j e. ( 1 ... ( n - 1 ) ) -> j e. NN ) | 
						
							| 118 | 117 | adantl |  |-  ( ( n e. NN /\ j e. ( 1 ... ( n - 1 ) ) ) -> j e. NN ) | 
						
							| 119 | 118 | nncnd |  |-  ( ( n e. NN /\ j e. ( 1 ... ( n - 1 ) ) ) -> j e. CC ) | 
						
							| 120 |  | id |  |-  ( j = ( n - k ) -> j = ( n - k ) ) | 
						
							| 121 | 114 115 116 119 120 | fprodrev |  |-  ( n e. NN -> prod_ j e. ( 1 ... ( n - 1 ) ) j = prod_ k e. ( ( n - ( n - 1 ) ) ... ( n - 1 ) ) ( n - k ) ) | 
						
							| 122 | 50 51 | nncand |  |-  ( n e. NN -> ( n - ( n - 1 ) ) = 1 ) | 
						
							| 123 | 122 | oveq1d |  |-  ( n e. NN -> ( ( n - ( n - 1 ) ) ... ( n - 1 ) ) = ( 1 ... ( n - 1 ) ) ) | 
						
							| 124 | 123 | prodeq1d |  |-  ( n e. NN -> prod_ k e. ( ( n - ( n - 1 ) ) ... ( n - 1 ) ) ( n - k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( n - k ) ) | 
						
							| 125 | 113 121 124 | 3eqtrd |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( n - k ) ) | 
						
							| 126 | 111 125 | oveq12d |  |-  ( n e. NN -> ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) n / prod_ k e. ( 1 ... ( n - 1 ) ) ( n - k ) ) ) | 
						
							| 127 | 104 126 | eqtr4d |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( n / ( n - k ) ) = ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. prod_ k e. ( 1 ... ( n - 1 ) ) ( n / ( n - k ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 129 | 79 103 128 | 3eqtrd |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 130 | 68 74 129 | 3eqtrd |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( n _C k ) x. ( n _C n ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 131 | 56 65 130 | 3eqtrd |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( n e. NN /\ prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 133 | 53 | prodeq1d |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = prod_ k e. ( 1 ... n ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 134 |  | elfznn |  |-  ( k e. ( 1 ... n ) -> k e. NN ) | 
						
							| 135 | 134 | adantl |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> k e. NN ) | 
						
							| 136 | 135 | nncnd |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> k e. CC ) | 
						
							| 137 | 135 | nnne0d |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> k =/= 0 ) | 
						
							| 138 |  | 2nn |  |-  2 e. NN | 
						
							| 139 | 138 | a1i |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> 2 e. NN ) | 
						
							| 140 | 139 135 | nnmulcld |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( 2 x. k ) e. NN ) | 
						
							| 141 | 140 | nnzd |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( 2 x. k ) e. ZZ ) | 
						
							| 142 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 143 | 142 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( n + 1 ) e. NN ) | 
						
							| 144 | 143 | nnzd |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( n + 1 ) e. ZZ ) | 
						
							| 145 | 141 144 | zsubcld |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( ( 2 x. k ) - ( n + 1 ) ) e. ZZ ) | 
						
							| 146 | 136 137 145 | expclzd |  |-  ( ( n e. NN /\ k e. ( 1 ... n ) ) -> ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) e. CC ) | 
						
							| 147 |  | id |  |-  ( k = n -> k = n ) | 
						
							| 148 |  | oveq2 |  |-  ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) | 
						
							| 149 | 148 | oveq1d |  |-  ( k = n -> ( ( 2 x. k ) - ( n + 1 ) ) = ( ( 2 x. n ) - ( n + 1 ) ) ) | 
						
							| 150 | 147 149 | oveq12d |  |-  ( k = n -> ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( n ^ ( ( 2 x. n ) - ( n + 1 ) ) ) ) | 
						
							| 151 | 58 146 150 | fprodm1 |  |-  ( n e. NN -> prod_ k e. ( 1 ... n ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) x. ( n ^ ( ( 2 x. n ) - ( n + 1 ) ) ) ) ) | 
						
							| 152 | 86 | nncnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k e. CC ) | 
						
							| 153 | 86 | nnne0d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> k =/= 0 ) | 
						
							| 154 | 138 | a1i |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> 2 e. NN ) | 
						
							| 155 | 154 86 | nnmulcld |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( 2 x. k ) e. NN ) | 
						
							| 156 | 155 | nnzd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( 2 x. k ) e. ZZ ) | 
						
							| 157 | 114 | adantr |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> n e. ZZ ) | 
						
							| 158 | 156 157 | zsubcld |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( ( 2 x. k ) - n ) e. ZZ ) | 
						
							| 159 | 152 153 158 | expclzd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - n ) ) e. CC ) | 
						
							| 160 | 69 159 152 153 | fproddiv |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( ( k ^ ( ( 2 x. k ) - n ) ) / k ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / prod_ k e. ( 1 ... ( n - 1 ) ) k ) ) | 
						
							| 161 | 155 | nncnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( 2 x. k ) e. CC ) | 
						
							| 162 |  | 1cnd |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> 1 e. CC ) | 
						
							| 163 | 161 84 162 | subsub4d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( ( ( 2 x. k ) - n ) - 1 ) = ( ( 2 x. k ) - ( n + 1 ) ) ) | 
						
							| 164 | 163 | oveq2d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( k ^ ( ( ( 2 x. k ) - n ) - 1 ) ) = ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 165 | 152 153 158 | expm1d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( k ^ ( ( ( 2 x. k ) - n ) - 1 ) ) = ( ( k ^ ( ( 2 x. k ) - n ) ) / k ) ) | 
						
							| 166 | 164 165 | eqtr3d |  |-  ( ( n e. NN /\ k e. ( 1 ... ( n - 1 ) ) ) -> ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( ( k ^ ( ( 2 x. k ) - n ) ) / k ) ) | 
						
							| 167 | 166 | prodeq2dv |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( ( k ^ ( ( 2 x. k ) - n ) ) / k ) ) | 
						
							| 168 |  | fprodfac |  |-  ( ( n - 1 ) e. NN0 -> ( ! ` ( n - 1 ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) k ) | 
						
							| 169 | 80 168 | syl |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) = prod_ k e. ( 1 ... ( n - 1 ) ) k ) | 
						
							| 170 | 169 | oveq2d |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / ( ! ` ( n - 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / prod_ k e. ( 1 ... ( n - 1 ) ) k ) ) | 
						
							| 171 | 160 167 170 | 3eqtr4d |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / ( ! ` ( n - 1 ) ) ) ) | 
						
							| 172 | 138 | a1i |  |-  ( n e. NN -> 2 e. NN ) | 
						
							| 173 |  | id |  |-  ( n e. NN -> n e. NN ) | 
						
							| 174 | 172 173 | nnmulcld |  |-  ( n e. NN -> ( 2 x. n ) e. NN ) | 
						
							| 175 | 174 | nncnd |  |-  ( n e. NN -> ( 2 x. n ) e. CC ) | 
						
							| 176 | 175 50 51 | subsub4d |  |-  ( n e. NN -> ( ( ( 2 x. n ) - n ) - 1 ) = ( ( 2 x. n ) - ( n + 1 ) ) ) | 
						
							| 177 | 50 | 2timesd |  |-  ( n e. NN -> ( 2 x. n ) = ( n + n ) ) | 
						
							| 178 | 50 50 177 | mvrladdd |  |-  ( n e. NN -> ( ( 2 x. n ) - n ) = n ) | 
						
							| 179 | 178 | oveq1d |  |-  ( n e. NN -> ( ( ( 2 x. n ) - n ) - 1 ) = ( n - 1 ) ) | 
						
							| 180 | 176 179 | eqtr3d |  |-  ( n e. NN -> ( ( 2 x. n ) - ( n + 1 ) ) = ( n - 1 ) ) | 
						
							| 181 | 180 | oveq2d |  |-  ( n e. NN -> ( n ^ ( ( 2 x. n ) - ( n + 1 ) ) ) = ( n ^ ( n - 1 ) ) ) | 
						
							| 182 | 171 181 | oveq12d |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) x. ( n ^ ( ( 2 x. n ) - ( n + 1 ) ) ) ) = ( ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / ( ! ` ( n - 1 ) ) ) x. ( n ^ ( n - 1 ) ) ) ) | 
						
							| 183 | 69 159 | fprodcl |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) e. CC ) | 
						
							| 184 |  | faccl |  |-  ( ( n - 1 ) e. NN0 -> ( ! ` ( n - 1 ) ) e. NN ) | 
						
							| 185 | 80 184 | syl |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) e. NN ) | 
						
							| 186 | 185 | nncnd |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) e. CC ) | 
						
							| 187 | 50 80 | expcld |  |-  ( n e. NN -> ( n ^ ( n - 1 ) ) e. CC ) | 
						
							| 188 | 185 | nnne0d |  |-  ( n e. NN -> ( ! ` ( n - 1 ) ) =/= 0 ) | 
						
							| 189 | 183 186 187 188 | div32d |  |-  ( n e. NN -> ( ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) / ( ! ` ( n - 1 ) ) ) x. ( n ^ ( n - 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 190 | 182 189 | eqtrd |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) x. ( n ^ ( ( 2 x. n ) - ( n + 1 ) ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 191 | 133 151 190 | 3eqtrd |  |-  ( n e. NN -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 192 | 191 | adantr |  |-  ( ( n e. NN /\ prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) = ( prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) x. ( ( n ^ ( n - 1 ) ) / ( ! ` ( n - 1 ) ) ) ) ) | 
						
							| 193 | 49 132 192 | 3eqtr4d |  |-  ( ( n e. NN /\ prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) ) -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) | 
						
							| 194 | 193 | ex |  |-  ( n e. NN -> ( prod_ k e. ( 1 ... ( n - 1 ) ) ( ( n - 1 ) _C k ) = prod_ k e. ( 1 ... ( n - 1 ) ) ( k ^ ( ( 2 x. k ) - n ) ) -> prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( ( ( n + 1 ) - 1 ) _C k ) = prod_ k e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( k ^ ( ( 2 x. k ) - ( n + 1 ) ) ) ) ) | 
						
							| 195 | 14 24 34 44 47 194 | nnind |  |-  ( N e. NN -> prod_ k e. ( 1 ... ( N - 1 ) ) ( ( N - 1 ) _C k ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( k ^ ( ( 2 x. k ) - N ) ) ) |