| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 0 ... 𝑚 )  =  ( 0 ... 0 ) ) | 
						
							| 2 | 1 | sumeq1d | ⊢ ( 𝑚  =  0  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑚  =  0  →  ( 𝑚  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 4 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝑚  =  0  →  ( 𝑚  +  1 )  =  1 ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑚  =  0  →  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 7 | 2 6 | eqeq12d | ⊢ ( 𝑚  =  0  →  ( Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  ↔  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑚  =  0  →  ( ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) ) )  ↔  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 10 | 9 | sumeq1d | ⊢ ( 𝑚  =  𝑛  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  ↔  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) ) )  ↔  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 0 ... 𝑚 )  =  ( 0 ... ( 𝑛  +  1 ) ) ) | 
						
							| 16 | 15 | sumeq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑚  +  1 )  =  ( ( 𝑛  +  1 )  +  1 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  ↔  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) ) )  ↔  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑚  =  𝑁  →  ( 0 ... 𝑚 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 22 | 21 | sumeq1d | ⊢ ( 𝑚  =  𝑁  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑘 C 𝐶 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑚  =  𝑁  →  ( 𝑚  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  =  ( ( 𝑁  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑚  =  𝑁  →  ( Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) )  ↔  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑁  +  1 ) C ( 𝐶  +  1 ) ) ) ) | 
						
							| 26 | 25 | imbi2d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑚  +  1 ) C ( 𝐶  +  1 ) ) )  ↔  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑁  +  1 ) C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 27 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 28 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 29 |  | nn0z | ⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℤ ) | 
						
							| 30 |  | bccl | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐶  ∈  ℤ )  →  ( 0 C 𝐶 )  ∈  ℕ0 ) | 
						
							| 31 | 28 29 30 | sylancr | ⊢ ( 𝐶  ∈  ℕ0  →  ( 0 C 𝐶 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | nn0cnd | ⊢ ( 𝐶  ∈  ℕ0  →  ( 0 C 𝐶 )  ∈  ℂ ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘 C 𝐶 )  =  ( 0 C 𝐶 ) ) | 
						
							| 34 | 33 | fsum1 | ⊢ ( ( 0  ∈  ℤ  ∧  ( 0 C 𝐶 )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 )  =  ( 0 C 𝐶 ) ) | 
						
							| 35 | 27 32 34 | sylancr | ⊢ ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 )  =  ( 0 C 𝐶 ) ) | 
						
							| 36 |  | elnn0 | ⊢ ( 𝐶  ∈  ℕ0  ↔  ( 𝐶  ∈  ℕ  ∨  𝐶  =  0 ) ) | 
						
							| 37 |  | 1red | ⊢ ( 𝐶  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 38 |  | nnrp | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℝ+ ) | 
						
							| 39 | 37 38 | ltaddrp2d | ⊢ ( 𝐶  ∈  ℕ  →  1  <  ( 𝐶  +  1 ) ) | 
						
							| 40 |  | peano2nn | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  +  1 )  ∈  ℕ ) | 
						
							| 41 | 40 | nnred | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  +  1 )  ∈  ℝ ) | 
						
							| 42 | 37 41 | ltnled | ⊢ ( 𝐶  ∈  ℕ  →  ( 1  <  ( 𝐶  +  1 )  ↔  ¬  ( 𝐶  +  1 )  ≤  1 ) ) | 
						
							| 43 | 39 42 | mpbid | ⊢ ( 𝐶  ∈  ℕ  →  ¬  ( 𝐶  +  1 )  ≤  1 ) | 
						
							| 44 |  | elfzle2 | ⊢ ( ( 𝐶  +  1 )  ∈  ( 0 ... 1 )  →  ( 𝐶  +  1 )  ≤  1 ) | 
						
							| 45 | 43 44 | nsyl | ⊢ ( 𝐶  ∈  ℕ  →  ¬  ( 𝐶  +  1 )  ∈  ( 0 ... 1 ) ) | 
						
							| 46 | 45 | iffalsed | ⊢ ( 𝐶  ∈  ℕ  →  if ( ( 𝐶  +  1 )  ∈  ( 0 ... 1 ) ,  ( ( ! ‘ 1 )  /  ( ( ! ‘ ( 1  −  ( 𝐶  +  1 ) ) )  ·  ( ! ‘ ( 𝐶  +  1 ) ) ) ) ,  0 )  =  0 ) | 
						
							| 47 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 48 | 40 | nnzd | ⊢ ( 𝐶  ∈  ℕ  →  ( 𝐶  +  1 )  ∈  ℤ ) | 
						
							| 49 |  | bcval | ⊢ ( ( 1  ∈  ℕ0  ∧  ( 𝐶  +  1 )  ∈  ℤ )  →  ( 1 C ( 𝐶  +  1 ) )  =  if ( ( 𝐶  +  1 )  ∈  ( 0 ... 1 ) ,  ( ( ! ‘ 1 )  /  ( ( ! ‘ ( 1  −  ( 𝐶  +  1 ) ) )  ·  ( ! ‘ ( 𝐶  +  1 ) ) ) ) ,  0 ) ) | 
						
							| 50 | 47 48 49 | sylancr | ⊢ ( 𝐶  ∈  ℕ  →  ( 1 C ( 𝐶  +  1 ) )  =  if ( ( 𝐶  +  1 )  ∈  ( 0 ... 1 ) ,  ( ( ! ‘ 1 )  /  ( ( ! ‘ ( 1  −  ( 𝐶  +  1 ) ) )  ·  ( ! ‘ ( 𝐶  +  1 ) ) ) ) ,  0 ) ) | 
						
							| 51 |  | bc0k | ⊢ ( 𝐶  ∈  ℕ  →  ( 0 C 𝐶 )  =  0 ) | 
						
							| 52 | 46 50 51 | 3eqtr4rd | ⊢ ( 𝐶  ∈  ℕ  →  ( 0 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 53 |  | bcnn | ⊢ ( 0  ∈  ℕ0  →  ( 0 C 0 )  =  1 ) | 
						
							| 54 | 28 53 | ax-mp | ⊢ ( 0 C 0 )  =  1 | 
						
							| 55 |  | bcnn | ⊢ ( 1  ∈  ℕ0  →  ( 1 C 1 )  =  1 ) | 
						
							| 56 | 47 55 | ax-mp | ⊢ ( 1 C 1 )  =  1 | 
						
							| 57 | 54 56 | eqtr4i | ⊢ ( 0 C 0 )  =  ( 1 C 1 ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝐶  =  0  →  ( 0 C 𝐶 )  =  ( 0 C 0 ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝐶  =  0  →  ( 𝐶  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 60 | 59 4 | eqtrdi | ⊢ ( 𝐶  =  0  →  ( 𝐶  +  1 )  =  1 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝐶  =  0  →  ( 1 C ( 𝐶  +  1 ) )  =  ( 1 C 1 ) ) | 
						
							| 62 | 57 58 61 | 3eqtr4a | ⊢ ( 𝐶  =  0  →  ( 0 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 63 | 52 62 | jaoi | ⊢ ( ( 𝐶  ∈  ℕ  ∨  𝐶  =  0 )  →  ( 0 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 64 | 36 63 | sylbi | ⊢ ( 𝐶  ∈  ℕ0  →  ( 0 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 65 | 35 64 | eqtrd | ⊢ ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑘 C 𝐶 )  =  ( 1 C ( 𝐶  +  1 ) ) ) | 
						
							| 66 |  | elnn0uz | ⊢ ( 𝑛  ∈  ℕ0  ↔  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 67 | 66 | biimpi | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 69 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) )  →  𝐶  ∈  ℕ0 ) | 
						
							| 72 | 71 | nn0zd | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) )  →  𝐶  ∈  ℤ ) | 
						
							| 73 |  | bccl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝐶  ∈  ℤ )  →  ( 𝑘 C 𝐶 )  ∈  ℕ0 ) | 
						
							| 74 | 70 72 73 | syl2anc | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) )  →  ( 𝑘 C 𝐶 )  ∈  ℕ0 ) | 
						
							| 75 | 74 | nn0cnd | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) )  →  ( 𝑘 C 𝐶 )  ∈  ℂ ) | 
						
							| 76 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C 𝐶 ) ) | 
						
							| 77 | 68 75 76 | fsump1 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  +  ( ( 𝑛  +  1 ) C 𝐶 ) ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  +  ( ( 𝑛  +  1 ) C 𝐶 ) ) ) | 
						
							| 79 |  | id | ⊢ ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 80 |  | nn0cn | ⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℂ ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  𝐶  ∈  ℂ ) | 
						
							| 82 |  | 1cnd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 83 | 81 82 | pncand | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝐶  +  1 )  −  1 )  =  𝐶 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) )  =  ( ( 𝑛  +  1 ) C 𝐶 ) ) | 
						
							| 85 | 84 | eqcomd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( ( 𝑛  +  1 ) C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) ) ) | 
						
							| 86 | 79 85 | oveqan12rd | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  +  ( ( 𝑛  +  1 ) C 𝐶 ) )  =  ( ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  +  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) ) ) ) | 
						
							| 87 |  | peano2nn0 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 88 |  | peano2nn0 | ⊢ ( 𝐶  ∈  ℕ0  →  ( 𝐶  +  1 )  ∈  ℕ0 ) | 
						
							| 89 | 88 | nn0zd | ⊢ ( 𝐶  ∈  ℕ0  →  ( 𝐶  +  1 )  ∈  ℤ ) | 
						
							| 90 |  | bcpasc | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ0  ∧  ( 𝐶  +  1 )  ∈  ℤ )  →  ( ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  +  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) ) )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 91 | 87 89 90 | syl2an | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  +  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) ) )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) )  →  ( ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  +  ( ( 𝑛  +  1 ) C ( ( 𝐶  +  1 )  −  1 ) ) )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 93 | 78 86 92 | 3eqtrd | ⊢ ( ( ( 𝑛  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) | 
						
							| 94 | 93 | exp31 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝐶  ∈  ℕ0  →  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 95 | 94 | a2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑛  +  1 ) C ( 𝐶  +  1 ) ) )  →  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... ( 𝑛  +  1 ) ) ( 𝑘 C 𝐶 )  =  ( ( ( 𝑛  +  1 )  +  1 ) C ( 𝐶  +  1 ) ) ) ) ) | 
						
							| 96 | 8 14 20 26 65 95 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐶  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑁  +  1 ) C ( 𝐶  +  1 ) ) ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( 𝑘 C 𝐶 )  =  ( ( 𝑁  +  1 ) C ( 𝐶  +  1 ) ) ) |