Metamath Proof Explorer


Theorem bcnn

Description: N choose N is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcnn N0(NN)=1

Proof

Step Hyp Ref Expression
1 0z 0
2 bccmpl N00(N0)=(NN0)
3 1 2 mpan2 N0(N0)=(NN0)
4 bcn0 N0(N0)=1
5 nn0cn N0N
6 5 subid1d N0N0=N
7 6 oveq2d N0(NN0)=(NN)
8 3 4 7 3eqtr3rd N0(NN)=1