Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodshft.1 | |
|
fprodshft.2 | |
||
fprodshft.3 | |
||
fprodshft.4 | |
||
fprodrev.5 | |
||
Assertion | fprodrev | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodshft.1 | |
|
2 | fprodshft.2 | |
|
3 | fprodshft.3 | |
|
4 | fprodshft.4 | |
|
5 | fprodrev.5 | |
|
6 | fzfid | |
|
7 | eqid | |
|
8 | 1 | adantr | |
9 | elfzelz | |
|
10 | 9 | adantl | |
11 | 8 10 | zsubcld | |
12 | 1 | adantr | |
13 | elfzelz | |
|
14 | 13 | adantl | |
15 | 12 14 | zsubcld | |
16 | simprr | |
|
17 | simprl | |
|
18 | 2 | adantr | |
19 | 3 | adantr | |
20 | 1 | adantr | |
21 | 9 | ad2antrl | |
22 | fzrev | |
|
23 | 18 19 20 21 22 | syl22anc | |
24 | 17 23 | mpbid | |
25 | 16 24 | eqeltrd | |
26 | oveq2 | |
|
27 | 26 | ad2antll | |
28 | 1 | zcnd | |
29 | 28 | adantr | |
30 | 9 | zcnd | |
31 | 30 | ad2antrl | |
32 | 29 31 | nncand | |
33 | 27 32 | eqtr2d | |
34 | 25 33 | jca | |
35 | simprr | |
|
36 | simprl | |
|
37 | 2 | adantr | |
38 | 3 | adantr | |
39 | 1 | adantr | |
40 | 13 | ad2antrl | |
41 | fzrev2 | |
|
42 | 37 38 39 40 41 | syl22anc | |
43 | 36 42 | mpbid | |
44 | 35 43 | eqeltrd | |
45 | oveq2 | |
|
46 | 45 | ad2antll | |
47 | 28 | adantr | |
48 | 13 | zcnd | |
49 | 48 | ad2antrl | |
50 | 47 49 | nncand | |
51 | 46 50 | eqtr2d | |
52 | 44 51 | jca | |
53 | 34 52 | impbida | |
54 | 7 11 15 53 | f1od | |
55 | oveq2 | |
|
56 | ovex | |
|
57 | 55 7 56 | fvmpt | |
58 | 57 | adantl | |
59 | 5 6 54 58 4 | fprodf1o | |