Metamath Proof Explorer


Theorem fprodrev

Description: Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses fprodshft.1 φK
fprodshft.2 φM
fprodshft.3 φN
fprodshft.4 φjMNA
fprodrev.5 j=KkA=B
Assertion fprodrev φj=MNA=k=KNKMB

Proof

Step Hyp Ref Expression
1 fprodshft.1 φK
2 fprodshft.2 φM
3 fprodshft.3 φN
4 fprodshft.4 φjMNA
5 fprodrev.5 j=KkA=B
6 fzfid φKNKMFin
7 eqid jKNKMKj=jKNKMKj
8 1 adantr φjKNKMK
9 elfzelz jKNKMj
10 9 adantl φjKNKMj
11 8 10 zsubcld φjKNKMKj
12 1 adantr φkMNK
13 elfzelz kMNk
14 13 adantl φkMNk
15 12 14 zsubcld φkMNKk
16 simprr φjKNKMk=Kjk=Kj
17 simprl φjKNKMk=KjjKNKM
18 2 adantr φjKNKMk=KjM
19 3 adantr φjKNKMk=KjN
20 1 adantr φjKNKMk=KjK
21 9 ad2antrl φjKNKMk=Kjj
22 fzrev MNKjjKNKMKjMN
23 18 19 20 21 22 syl22anc φjKNKMk=KjjKNKMKjMN
24 17 23 mpbid φjKNKMk=KjKjMN
25 16 24 eqeltrd φjKNKMk=KjkMN
26 oveq2 k=KjKk=KKj
27 26 ad2antll φjKNKMk=KjKk=KKj
28 1 zcnd φK
29 28 adantr φjKNKMk=KjK
30 9 zcnd jKNKMj
31 30 ad2antrl φjKNKMk=Kjj
32 29 31 nncand φjKNKMk=KjKKj=j
33 27 32 eqtr2d φjKNKMk=Kjj=Kk
34 25 33 jca φjKNKMk=KjkMNj=Kk
35 simprr φkMNj=Kkj=Kk
36 simprl φkMNj=KkkMN
37 2 adantr φkMNj=KkM
38 3 adantr φkMNj=KkN
39 1 adantr φkMNj=KkK
40 13 ad2antrl φkMNj=Kkk
41 fzrev2 MNKkkMNKkKNKM
42 37 38 39 40 41 syl22anc φkMNj=KkkMNKkKNKM
43 36 42 mpbid φkMNj=KkKkKNKM
44 35 43 eqeltrd φkMNj=KkjKNKM
45 oveq2 j=KkKj=KKk
46 45 ad2antll φkMNj=KkKj=KKk
47 28 adantr φkMNj=KkK
48 13 zcnd kMNk
49 48 ad2antrl φkMNj=Kkk
50 47 49 nncand φkMNj=KkKKk=k
51 46 50 eqtr2d φkMNj=Kkk=Kj
52 44 51 jca φkMNj=KkjKNKMk=Kj
53 34 52 impbida φjKNKMk=KjkMNj=Kk
54 7 11 15 53 f1od φjKNKMKj:KNKM1-1 ontoMN
55 oveq2 j=kKj=Kk
56 ovex KkV
57 55 7 56 fvmpt kKNKMjKNKMKjk=Kk
58 57 adantl φkKNKMjKNKMKjk=Kk
59 5 6 54 58 4 fprodf1o φj=MNA=k=KNKMB