| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodshft.1 |
|
| 2 |
|
fprodshft.2 |
|
| 3 |
|
fprodshft.3 |
|
| 4 |
|
fprodshft.4 |
|
| 5 |
|
fprodrev.5 |
|
| 6 |
|
fzfid |
|
| 7 |
|
eqid |
|
| 8 |
1
|
adantr |
|
| 9 |
|
elfzelz |
|
| 10 |
9
|
adantl |
|
| 11 |
8 10
|
zsubcld |
|
| 12 |
1
|
adantr |
|
| 13 |
|
elfzelz |
|
| 14 |
13
|
adantl |
|
| 15 |
12 14
|
zsubcld |
|
| 16 |
|
simprr |
|
| 17 |
|
simprl |
|
| 18 |
2
|
adantr |
|
| 19 |
3
|
adantr |
|
| 20 |
1
|
adantr |
|
| 21 |
9
|
ad2antrl |
|
| 22 |
|
fzrev |
|
| 23 |
18 19 20 21 22
|
syl22anc |
|
| 24 |
17 23
|
mpbid |
|
| 25 |
16 24
|
eqeltrd |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
ad2antll |
|
| 28 |
1
|
zcnd |
|
| 29 |
28
|
adantr |
|
| 30 |
9
|
zcnd |
|
| 31 |
30
|
ad2antrl |
|
| 32 |
29 31
|
nncand |
|
| 33 |
27 32
|
eqtr2d |
|
| 34 |
25 33
|
jca |
|
| 35 |
|
simprr |
|
| 36 |
|
simprl |
|
| 37 |
2
|
adantr |
|
| 38 |
3
|
adantr |
|
| 39 |
1
|
adantr |
|
| 40 |
13
|
ad2antrl |
|
| 41 |
|
fzrev2 |
|
| 42 |
37 38 39 40 41
|
syl22anc |
|
| 43 |
36 42
|
mpbid |
|
| 44 |
35 43
|
eqeltrd |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
ad2antll |
|
| 47 |
28
|
adantr |
|
| 48 |
13
|
zcnd |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
47 49
|
nncand |
|
| 51 |
46 50
|
eqtr2d |
|
| 52 |
44 51
|
jca |
|
| 53 |
34 52
|
impbida |
|
| 54 |
7 11 15 53
|
f1od |
|
| 55 |
|
oveq2 |
|
| 56 |
|
ovex |
|
| 57 |
55 7 56
|
fvmpt |
|
| 58 |
57
|
adantl |
|
| 59 |
5 6 54 58 4
|
fprodf1o |
|