| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 2 |  | bcval | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  - 1  ∈  ℤ )  →  ( 𝑁 C - 1 )  =  if ( - 1  ∈  ( 0 ... 𝑁 ) ,  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  - 1 ) )  ·  ( ! ‘ - 1 ) ) ) ,  0 ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C - 1 )  =  if ( - 1  ∈  ( 0 ... 𝑁 ) ,  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  - 1 ) )  ·  ( ! ‘ - 1 ) ) ) ,  0 ) ) | 
						
							| 4 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 5 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 | 5 6 | ltnlei | ⊢ ( - 1  <  0  ↔  ¬  0  ≤  - 1 ) | 
						
							| 8 | 4 7 | mpbi | ⊢ ¬  0  ≤  - 1 | 
						
							| 9 | 8 | intnanr | ⊢ ¬  ( 0  ≤  - 1  ∧  - 1  ≤  𝑁 ) | 
						
							| 10 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 11 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 12 |  | elfz | ⊢ ( ( - 1  ∈  ℤ  ∧  0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( - 1  ∈  ( 0 ... 𝑁 )  ↔  ( 0  ≤  - 1  ∧  - 1  ≤  𝑁 ) ) ) | 
						
							| 13 | 1 11 12 | mp3an12 | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1  ∈  ( 0 ... 𝑁 )  ↔  ( 0  ≤  - 1  ∧  - 1  ≤  𝑁 ) ) ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( - 1  ∈  ( 0 ... 𝑁 )  ↔  ( 0  ≤  - 1  ∧  - 1  ≤  𝑁 ) ) ) | 
						
							| 15 | 9 14 | mtbiri | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  - 1  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 16 | 15 | iffalsed | ⊢ ( 𝑁  ∈  ℕ0  →  if ( - 1  ∈  ( 0 ... 𝑁 ) ,  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  - 1 ) )  ·  ( ! ‘ - 1 ) ) ) ,  0 )  =  0 ) | 
						
							| 17 | 3 16 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C - 1 )  =  0 ) |