Metamath Proof Explorer


Theorem bcneg1

Description: The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020)

Ref Expression
Assertion bcneg1 N0(N1)=0

Proof

Step Hyp Ref Expression
1 neg1z 1
2 bcval N01(N1)=if10NN!N-1!-1!0
3 1 2 mpan2 N0(N1)=if10NN!N-1!-1!0
4 neg1lt0 1<0
5 neg1rr 1
6 0re 0
7 5 6 ltnlei 1<0¬01
8 4 7 mpbi ¬01
9 8 intnanr ¬011N
10 nn0z N0N
11 0z 0
12 elfz 10N10N011N
13 1 11 12 mp3an12 N10N011N
14 10 13 syl N010N011N
15 9 14 mtbiri N0¬10N
16 15 iffalsed N0if10NN!N-1!-1!0=0
17 3 16 eqtrd N0(N1)=0