Metamath Proof Explorer


Theorem bcneg1

Description: The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020)

Ref Expression
Assertion bcneg1 N 0 ( N 1 ) = 0

Proof

Step Hyp Ref Expression
1 neg1z 1
2 bcval N 0 1 ( N 1 ) = if 1 0 N N ! N -1 ! -1 ! 0
3 1 2 mpan2 N 0 ( N 1 ) = if 1 0 N N ! N -1 ! -1 ! 0
4 neg1lt0 1 < 0
5 neg1rr 1
6 0re 0
7 5 6 ltnlei 1 < 0 ¬ 0 1
8 4 7 mpbi ¬ 0 1
9 8 intnanr ¬ 0 1 1 N
10 nn0z N 0 N
11 0z 0
12 elfz 1 0 N 1 0 N 0 1 1 N
13 1 11 12 mp3an12 N 1 0 N 0 1 1 N
14 10 13 syl N 0 1 0 N 0 1 1 N
15 9 14 mtbiri N 0 ¬ 1 0 N
16 15 iffalsed N 0 if 1 0 N N ! N -1 ! -1 ! 0 = 0
17 3 16 eqtrd N 0 ( N 1 ) = 0