Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifnp1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
fwddifnp1.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
fwddifnp1.3 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
4 |
|
fwddifnp1.4 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
5 |
|
fwddifnp1.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
6 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℤ ) |
7 |
|
bcpasc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝑘 ) ) |
8 |
1 6 7
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝑘 ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
10 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
11 |
1 6 10
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
12 |
11
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
13 |
|
peano2zm |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) |
14 |
6 13
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( 𝑘 − 1 ) ∈ ℤ ) |
15 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
16 |
1 14 15
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑘 − 1 ) ) ∈ ℂ ) |
18 |
12 17
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) + ( 𝑁 C 𝑘 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) + ( 𝑁 C 𝑘 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
20 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
22 |
21
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
23 |
|
zsubcl |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 + 1 ) − 𝑘 ) ∈ ℤ ) |
24 |
22 6 23
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) − 𝑘 ) ∈ ℤ ) |
25 |
|
m1expcl |
⊢ ( ( ( 𝑁 + 1 ) − 𝑘 ) ∈ ℤ → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℤ ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℤ ) |
27 |
26
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) ∈ ℂ ) |
28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
29 |
28 5
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ∈ ℂ ) |
30 |
27 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ∈ ℂ ) |
31 |
17 12 30
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) + ( 𝑁 C 𝑘 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
32 |
19 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℕ0 ) |
34 |
33
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℂ ) |
35 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℤ ) |
36 |
35
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
37 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
38 |
34 36 37
|
subsub3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 − ( 𝑘 − 1 ) ) = ( ( 𝑁 + 1 ) − 𝑘 ) ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) − 𝑘 ) = ( 𝑁 − ( 𝑘 − 1 ) ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
43 |
34 37 36
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) − 𝑘 ) = ( ( 𝑁 − 𝑘 ) + 1 ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = ( - 1 ↑ ( ( 𝑁 − 𝑘 ) + 1 ) ) ) |
45 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → - 1 ∈ ℂ ) |
47 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → - 1 ≠ 0 ) |
49 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
50 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
51 |
49 6 50
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
52 |
46 48 51
|
expp1zd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 − 𝑘 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · - 1 ) ) |
53 |
44 52
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · - 1 ) ) |
54 |
|
m1expcl |
⊢ ( ( 𝑁 − 𝑘 ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℤ ) |
55 |
51 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℤ ) |
56 |
55
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ∈ ℂ ) |
57 |
56 46
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · - 1 ) = ( - 1 · ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) ) |
58 |
56
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 · ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) = - ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) |
59 |
53 57 58
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) = - ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( - ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
61 |
56 29
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = - ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
62 |
60 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = - ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( 𝑁 C 𝑘 ) · - ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
64 |
56 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ∈ ℂ ) |
65 |
12 64
|
mulneg2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · - ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = - ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
66 |
63 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = - ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
67 |
42 66
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + - ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
68 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( 𝑁 − ( 𝑘 − 1 ) ) ∈ ℤ ) |
69 |
49 14 68
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 − ( 𝑘 − 1 ) ) ∈ ℤ ) |
70 |
|
m1expcl |
⊢ ( ( 𝑁 − ( 𝑘 − 1 ) ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ∈ ℤ ) |
72 |
71
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
73 |
72 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ∈ ℂ ) |
74 |
17 73
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
75 |
12 64
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
76 |
74 75
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + - ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
77 |
32 67 76
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 C 𝑘 ) + ( 𝑁 C ( 𝑘 − 1 ) ) ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
78 |
9 77
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
79 |
78
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
80 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
81 |
80 74 75
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
82 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
83 |
21 82
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 − 1 ) = ( 0 − 1 ) ) |
85 |
84
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 𝑁 C ( 𝑘 − 1 ) ) = ( 𝑁 C ( 0 − 1 ) ) ) |
86 |
84
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 𝑁 − ( 𝑘 − 1 ) ) = ( 𝑁 − ( 0 − 1 ) ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝑘 = 0 → ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) = ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) ) |
88 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑋 + 𝑘 ) = ( 𝑋 + 0 ) ) |
89 |
88
|
fveq2d |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) |
90 |
87 89
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) |
91 |
85 90
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( 𝑁 C ( 0 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
92 |
83 74 91
|
fsum1p |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( ( 𝑁 C ( 0 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
93 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
94 |
93
|
oveq2i |
⊢ ( 𝑁 C - 1 ) = ( 𝑁 C ( 0 − 1 ) ) |
95 |
|
bcneg1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C - 1 ) = 0 ) |
96 |
1 95
|
syl |
⊢ ( 𝜑 → ( 𝑁 C - 1 ) = 0 ) |
97 |
94 96
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑁 C ( 0 − 1 ) ) = 0 ) |
98 |
97
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 C ( 0 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = ( 0 · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) ) |
99 |
|
0z |
⊢ 0 ∈ ℤ |
100 |
|
1z |
⊢ 1 ∈ ℤ |
101 |
|
zsubcl |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 0 − 1 ) ∈ ℤ ) |
102 |
99 100 101
|
mp2an |
⊢ ( 0 − 1 ) ∈ ℤ |
103 |
102
|
a1i |
⊢ ( 𝜑 → ( 0 − 1 ) ∈ ℤ ) |
104 |
49 103
|
zsubcld |
⊢ ( 𝜑 → ( 𝑁 − ( 0 − 1 ) ) ∈ ℤ ) |
105 |
|
m1expcl |
⊢ ( ( 𝑁 − ( 0 − 1 ) ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) ∈ ℤ ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) ∈ ℤ ) |
107 |
106
|
zcnd |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) ∈ ℂ ) |
108 |
|
eluzfz1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
109 |
83 108
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
110 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
111 |
88
|
eleq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑋 + 𝑘 ) ∈ 𝐴 ↔ ( 𝑋 + 0 ) ∈ 𝐴 ) ) |
112 |
111
|
rspcva |
⊢ ( ( 0 ∈ ( 0 ... ( 𝑁 + 1 ) ) ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( 𝑋 + 𝑘 ) ∈ 𝐴 ) → ( 𝑋 + 0 ) ∈ 𝐴 ) |
113 |
109 110 112
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 + 0 ) ∈ 𝐴 ) |
114 |
3 113
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + 0 ) ) ∈ ℂ ) |
115 |
107 114
|
mulcld |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ∈ ℂ ) |
116 |
115
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = 0 ) |
117 |
98 116
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 C ( 0 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) = 0 ) |
118 |
117
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 C ( 0 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 0 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 0 ) ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = ( 0 + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
119 |
|
fzfid |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ∈ Fin ) |
120 |
|
olc |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) |
121 |
|
elfzp12 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
122 |
83 121
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
123 |
122
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 0 ∨ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
124 |
120 123
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
125 |
124 74
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
126 |
119 125
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
127 |
126
|
addid2d |
⊢ ( 𝜑 → ( 0 + Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
128 |
92 118 127
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
129 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑋 ∈ ℂ ) |
130 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
131 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℤ ) |
132 |
131
|
zcnd |
⊢ ( 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → 𝑘 ∈ ℂ ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
134 |
129 130 133
|
ppncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) = ( 𝑋 + 𝑘 ) ) |
135 |
134
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) |
136 |
135
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) = ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) |
137 |
136
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
138 |
137
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
139 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
140 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
141 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℤ ) |
142 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( 𝑁 C 𝑗 ) ∈ ℕ0 ) |
143 |
142
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( 𝑁 C 𝑗 ) ∈ ℂ ) |
144 |
1 141 143
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑗 ) ∈ ℂ ) |
145 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑁 − 𝑗 ) ∈ ℤ ) |
146 |
49 141 145
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑗 ) ∈ ℤ ) |
147 |
|
m1expcl |
⊢ ( ( 𝑁 − 𝑗 ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − 𝑗 ) ) ∈ ℤ ) |
148 |
146 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ ( 𝑁 − 𝑗 ) ) ∈ ℤ ) |
149 |
148
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ ( 𝑁 − 𝑗 ) ) ∈ ℂ ) |
150 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
151 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ℂ ) |
152 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 1 ∈ ℂ ) |
153 |
141
|
zcnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → 𝑗 ∈ ℂ ) |
154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → 𝑗 ∈ ℂ ) |
155 |
151 152 154
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑗 ) = ( 𝑋 + ( 1 + 𝑗 ) ) ) |
156 |
152 154
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 1 + 𝑗 ) = ( 𝑗 + 1 ) ) |
157 |
156
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + ( 1 + 𝑗 ) ) = ( 𝑋 + ( 𝑗 + 1 ) ) ) |
158 |
155 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑗 ) = ( 𝑋 + ( 𝑗 + 1 ) ) ) |
159 |
|
fzp1elp1 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
160 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑋 + 𝑘 ) = ( 𝑋 + ( 𝑗 + 1 ) ) ) |
161 |
160
|
eleq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝑋 + 𝑘 ) ∈ 𝐴 ↔ ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) ) |
162 |
161
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( 𝑋 + 𝑘 ) ∈ 𝐴 → ( ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) ) |
163 |
110 162
|
syl |
⊢ ( 𝜑 → ( ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) ) |
164 |
163
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) |
165 |
159 164
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) |
166 |
158 165
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑗 ) ∈ 𝐴 ) |
167 |
150 166
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ∈ ℂ ) |
168 |
149 167
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ∈ ℂ ) |
169 |
144 168
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑗 ) · ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ) ∈ ℂ ) |
170 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( 𝑁 C 𝑗 ) = ( 𝑁 C ( 𝑘 − 1 ) ) ) |
171 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( 𝑁 − 𝑗 ) = ( 𝑁 − ( 𝑘 − 1 ) ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( - 1 ↑ ( 𝑁 − 𝑗 ) ) = ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) ) |
173 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( ( 𝑋 + 1 ) + 𝑗 ) = ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) |
174 |
173
|
fveq2d |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) |
175 |
172 174
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) = ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) |
176 |
170 175
|
oveq12d |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( ( 𝑁 C 𝑗 ) · ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ) = ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) ) |
177 |
139 140 49 169 176
|
fsumshft |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑗 ) · ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ) = Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) ) |
178 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 C 𝑗 ) = ( 𝑁 C 𝑘 ) ) |
179 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 − 𝑗 ) = ( 𝑁 − 𝑘 ) ) |
180 |
179
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( - 1 ↑ ( 𝑁 − 𝑗 ) ) = ( - 1 ↑ ( 𝑁 − 𝑘 ) ) ) |
181 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑋 + 1 ) + 𝑗 ) = ( ( 𝑋 + 1 ) + 𝑘 ) ) |
182 |
181
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) = ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) |
183 |
180 182
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) = ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) |
184 |
178 183
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 C 𝑗 ) · ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) ) |
185 |
184
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑗 ) · ( ( - 1 ↑ ( 𝑁 − 𝑗 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑗 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) |
186 |
177 185
|
eqtr3di |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + ( 𝑘 − 1 ) ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) ) |
187 |
128 138 186
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) ) |
188 |
1 82
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
189 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑁 C 𝑘 ) = ( 𝑁 C ( 𝑁 + 1 ) ) ) |
190 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑁 − 𝑘 ) = ( 𝑁 − ( 𝑁 + 1 ) ) ) |
191 |
190
|
oveq2d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( - 1 ↑ ( 𝑁 − 𝑘 ) ) = ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) ) |
192 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑋 + 𝑘 ) = ( 𝑋 + ( 𝑁 + 1 ) ) ) |
193 |
192
|
fveq2d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) = ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) |
194 |
191 193
|
oveq12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) = ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) |
195 |
189 194
|
oveq12d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( ( 𝑁 C ( 𝑁 + 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) ) |
196 |
188 75 195
|
fsump1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + ( ( 𝑁 C ( 𝑁 + 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) ) ) |
197 |
|
bcval |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( 𝑁 C ( 𝑁 + 1 ) ) = if ( ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) , 0 ) ) |
198 |
1 22 197
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑁 + 1 ) ) = if ( ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) , 0 ) ) |
199 |
|
fzp1nel |
⊢ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) |
200 |
199
|
iffalsei |
⊢ if ( ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( ! ‘ ( 𝑁 + 1 ) ) ) ) , 0 ) = 0 |
201 |
198 200
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑁 C ( 𝑁 + 1 ) ) = 0 ) |
202 |
201
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 C ( 𝑁 + 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) = ( 0 · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) ) |
203 |
49 22
|
zsubcld |
⊢ ( 𝜑 → ( 𝑁 − ( 𝑁 + 1 ) ) ∈ ℤ ) |
204 |
|
m1expcl |
⊢ ( ( 𝑁 − ( 𝑁 + 1 ) ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) ∈ ℤ ) |
205 |
204
|
zcnd |
⊢ ( ( 𝑁 − ( 𝑁 + 1 ) ) ∈ ℤ → ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
206 |
203 205
|
syl |
⊢ ( 𝜑 → ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
207 |
|
eluzfz2 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝑁 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
208 |
83 207
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
209 |
192
|
eleq1d |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ( 𝑋 + 𝑘 ) ∈ 𝐴 ↔ ( 𝑋 + ( 𝑁 + 1 ) ) ∈ 𝐴 ) ) |
210 |
209
|
rspcv |
⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( 𝑋 + 𝑘 ) ∈ 𝐴 → ( 𝑋 + ( 𝑁 + 1 ) ) ∈ 𝐴 ) ) |
211 |
208 110 210
|
sylc |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑁 + 1 ) ) ∈ 𝐴 ) |
212 |
3 211
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
213 |
206 212
|
mulcld |
⊢ ( 𝜑 → ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ∈ ℂ ) |
214 |
213
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) = 0 ) |
215 |
202 214
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 C ( 𝑁 + 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) = 0 ) |
216 |
215
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + ( ( 𝑁 C ( 𝑁 + 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑁 + 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + ( 𝑁 + 1 ) ) ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + 0 ) ) |
217 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
218 |
|
fzelp1 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
219 |
218 75
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
220 |
217 219
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ∈ ℂ ) |
221 |
220
|
addid1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) + 0 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
222 |
196 216 221
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
223 |
187 222
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C ( 𝑘 − 1 ) ) · ( ( - 1 ↑ ( 𝑁 − ( 𝑘 − 1 ) ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
224 |
79 81 223
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
225 |
21 2 3 4 5
|
fwddifnval |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ( ( ( 𝑁 + 1 ) C 𝑘 ) · ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
226 |
|
peano2cn |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 1 ) ∈ ℂ ) |
227 |
4 226
|
syl |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ ℂ ) |
228 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑋 ∈ ℂ ) |
229 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 1 ∈ ℂ ) |
230 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
231 |
230
|
zcnd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
232 |
231
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
233 |
228 229 232
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑘 ) = ( 𝑋 + ( 1 + 𝑘 ) ) ) |
234 |
229 232
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1 + 𝑘 ) = ( 𝑘 + 1 ) ) |
235 |
234
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + ( 1 + 𝑘 ) ) = ( 𝑋 + ( 𝑘 + 1 ) ) ) |
236 |
233 235
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑘 ) = ( 𝑋 + ( 𝑘 + 1 ) ) ) |
237 |
|
fzp1elp1 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
238 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
239 |
238
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) ) |
240 |
239
|
anbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) ↔ ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) ) ) |
241 |
238
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑋 + ( 𝑗 + 1 ) ) = ( 𝑋 + ( 𝑘 + 1 ) ) ) |
242 |
241
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ↔ ( 𝑋 + ( 𝑘 + 1 ) ) ∈ 𝐴 ) ) |
243 |
240 242
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑋 + ( 𝑗 + 1 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑋 + ( 𝑘 + 1 ) ) ∈ 𝐴 ) ) ) |
244 |
243 164
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑋 + ( 𝑘 + 1 ) ) ∈ 𝐴 ) |
245 |
237 244
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + ( 𝑘 + 1 ) ) ∈ 𝐴 ) |
246 |
236 245
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑋 + 1 ) + 𝑘 ) ∈ 𝐴 ) |
247 |
1 2 3 227 246
|
fwddifnval |
⊢ ( 𝜑 → ( ( 𝑁 △n 𝐹 ) ‘ ( 𝑋 + 1 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) ) |
248 |
218 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 + 𝑘 ) ∈ 𝐴 ) |
249 |
1 2 3 4 248
|
fwddifnval |
⊢ ( 𝜑 → ( ( 𝑁 △n 𝐹 ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) |
250 |
247 249
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 △n 𝐹 ) ‘ ( 𝑋 + 1 ) ) − ( ( 𝑁 △n 𝐹 ) ‘ 𝑋 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( ( 𝑋 + 1 ) + 𝑘 ) ) ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( - 1 ↑ ( 𝑁 − 𝑘 ) ) · ( 𝐹 ‘ ( 𝑋 + 𝑘 ) ) ) ) ) ) |
251 |
224 225 250
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑁 + 1 ) △n 𝐹 ) ‘ 𝑋 ) = ( ( ( 𝑁 △n 𝐹 ) ‘ ( 𝑋 + 1 ) ) − ( ( 𝑁 △n 𝐹 ) ‘ 𝑋 ) ) ) |