| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fwddifnval.1 |  |-  ( ph -> N e. NN0 ) | 
						
							| 2 |  | fwddifnval.2 |  |-  ( ph -> A C_ CC ) | 
						
							| 3 |  | fwddifnval.3 |  |-  ( ph -> F : A --> CC ) | 
						
							| 4 |  | fwddifnval.4 |  |-  ( ph -> X e. CC ) | 
						
							| 5 |  | fwddifnval.5 |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. A ) | 
						
							| 6 |  | df-fwddifn |  |-  _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( n = N /\ f = F ) -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 10 |  | dmeq |  |-  ( f = F -> dom f = dom F ) | 
						
							| 11 | 10 | eleq2d |  |-  ( f = F -> ( ( y + k ) e. dom f <-> ( y + k ) e. dom F ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( n = N /\ f = F ) -> ( ( y + k ) e. dom f <-> ( y + k ) e. dom F ) ) | 
						
							| 13 | 9 12 | raleqbidv |  |-  ( ( n = N /\ f = F ) -> ( A. k e. ( 0 ... n ) ( y + k ) e. dom f <-> A. k e. ( 0 ... N ) ( y + k ) e. dom F ) ) | 
						
							| 14 | 13 | rabbidv |  |-  ( ( n = N /\ f = F ) -> { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } = { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } ) | 
						
							| 15 |  | oveq1 |  |-  ( n = N -> ( n _C k ) = ( N _C k ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( n = N /\ f = F ) -> ( n _C k ) = ( N _C k ) ) | 
						
							| 17 |  | oveq1 |  |-  ( n = N -> ( n - k ) = ( N - k ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( n = N -> ( -u 1 ^ ( n - k ) ) = ( -u 1 ^ ( N - k ) ) ) | 
						
							| 19 |  | fveq1 |  |-  ( f = F -> ( f ` ( x + k ) ) = ( F ` ( x + k ) ) ) | 
						
							| 20 | 18 19 | oveqan12d |  |-  ( ( n = N /\ f = F ) -> ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) | 
						
							| 21 | 16 20 | oveq12d |  |-  ( ( n = N /\ f = F ) -> ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( n = N /\ f = F ) /\ k e. ( 0 ... n ) ) -> ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) | 
						
							| 23 | 9 22 | sumeq12dv |  |-  ( ( n = N /\ f = F ) -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) | 
						
							| 24 | 14 23 | mpteq12dv |  |-  ( ( n = N /\ f = F ) -> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ ( n = N /\ f = F ) ) -> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) | 
						
							| 26 |  | cnex |  |-  CC e. _V | 
						
							| 27 |  | elpm2r |  |-  ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) | 
						
							| 28 | 26 26 27 | mpanl12 |  |-  ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) | 
						
							| 29 | 3 2 28 | syl2anc |  |-  ( ph -> F e. ( CC ^pm CC ) ) | 
						
							| 30 | 26 | mptrabex |  |-  ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) e. _V | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) e. _V ) | 
						
							| 32 | 7 25 1 29 31 | ovmpod |  |-  ( ph -> ( N _/_\^n F ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) | 
						
							| 33 |  | fvoveq1 |  |-  ( x = X -> ( F ` ( x + k ) ) = ( F ` ( X + k ) ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( x = X -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( x = X -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 36 | 35 | sumeq2sdv |  |-  ( x = X -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ x = X ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) | 
						
							| 38 | 3 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> dom F = A ) | 
						
							| 40 | 5 39 | eleqtrrd |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. dom F ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ph -> A. k e. ( 0 ... N ) ( X + k ) e. dom F ) | 
						
							| 42 |  | oveq1 |  |-  ( y = X -> ( y + k ) = ( X + k ) ) | 
						
							| 43 | 42 | eleq1d |  |-  ( y = X -> ( ( y + k ) e. dom F <-> ( X + k ) e. dom F ) ) | 
						
							| 44 | 43 | ralbidv |  |-  ( y = X -> ( A. k e. ( 0 ... N ) ( y + k ) e. dom F <-> A. k e. ( 0 ... N ) ( X + k ) e. dom F ) ) | 
						
							| 45 | 44 | elrab |  |-  ( X e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } <-> ( X e. CC /\ A. k e. ( 0 ... N ) ( X + k ) e. dom F ) ) | 
						
							| 46 | 4 41 45 | sylanbrc |  |-  ( ph -> X e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } ) | 
						
							| 47 |  | sumex |  |-  sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. _V ) | 
						
							| 49 | 32 37 46 48 | fvmptd |  |-  ( ph -> ( ( N _/_\^n F ) ` X ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) |