Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifnval.1 |
|- ( ph -> N e. NN0 ) |
2 |
|
fwddifnval.2 |
|- ( ph -> A C_ CC ) |
3 |
|
fwddifnval.3 |
|- ( ph -> F : A --> CC ) |
4 |
|
fwddifnval.4 |
|- ( ph -> X e. CC ) |
5 |
|
fwddifnval.5 |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. A ) |
6 |
|
df-fwddifn |
|- _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) |
7 |
6
|
a1i |
|- ( ph -> _/_\^n = ( n e. NN0 , f e. ( CC ^pm CC ) |-> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) ) ) |
8 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
9 |
8
|
adantr |
|- ( ( n = N /\ f = F ) -> ( 0 ... n ) = ( 0 ... N ) ) |
10 |
|
dmeq |
|- ( f = F -> dom f = dom F ) |
11 |
10
|
eleq2d |
|- ( f = F -> ( ( y + k ) e. dom f <-> ( y + k ) e. dom F ) ) |
12 |
11
|
adantl |
|- ( ( n = N /\ f = F ) -> ( ( y + k ) e. dom f <-> ( y + k ) e. dom F ) ) |
13 |
9 12
|
raleqbidv |
|- ( ( n = N /\ f = F ) -> ( A. k e. ( 0 ... n ) ( y + k ) e. dom f <-> A. k e. ( 0 ... N ) ( y + k ) e. dom F ) ) |
14 |
13
|
rabbidv |
|- ( ( n = N /\ f = F ) -> { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } = { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } ) |
15 |
|
oveq1 |
|- ( n = N -> ( n _C k ) = ( N _C k ) ) |
16 |
15
|
adantr |
|- ( ( n = N /\ f = F ) -> ( n _C k ) = ( N _C k ) ) |
17 |
|
oveq1 |
|- ( n = N -> ( n - k ) = ( N - k ) ) |
18 |
17
|
oveq2d |
|- ( n = N -> ( -u 1 ^ ( n - k ) ) = ( -u 1 ^ ( N - k ) ) ) |
19 |
|
fveq1 |
|- ( f = F -> ( f ` ( x + k ) ) = ( F ` ( x + k ) ) ) |
20 |
18 19
|
oveqan12d |
|- ( ( n = N /\ f = F ) -> ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) |
21 |
16 20
|
oveq12d |
|- ( ( n = N /\ f = F ) -> ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) |
22 |
21
|
adantr |
|- ( ( ( n = N /\ f = F ) /\ k e. ( 0 ... n ) ) -> ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) |
23 |
9 22
|
sumeq12dv |
|- ( ( n = N /\ f = F ) -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) |
24 |
14 23
|
mpteq12dv |
|- ( ( n = N /\ f = F ) -> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) |
25 |
24
|
adantl |
|- ( ( ph /\ ( n = N /\ f = F ) ) -> ( x e. { y e. CC | A. k e. ( 0 ... n ) ( y + k ) e. dom f } |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( -u 1 ^ ( n - k ) ) x. ( f ` ( x + k ) ) ) ) ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) |
26 |
|
cnex |
|- CC e. _V |
27 |
|
elpm2r |
|- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
28 |
26 26 27
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) |
29 |
3 2 28
|
syl2anc |
|- ( ph -> F e. ( CC ^pm CC ) ) |
30 |
26
|
mptrabex |
|- ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) e. _V |
31 |
30
|
a1i |
|- ( ph -> ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) e. _V ) |
32 |
7 25 1 29 31
|
ovmpod |
|- ( ph -> ( N _/_\^n F ) = ( x e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) ) ) |
33 |
|
fvoveq1 |
|- ( x = X -> ( F ` ( x + k ) ) = ( F ` ( X + k ) ) ) |
34 |
33
|
oveq2d |
|- ( x = X -> ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) = ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) |
35 |
34
|
oveq2d |
|- ( x = X -> ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) |
36 |
35
|
sumeq2sdv |
|- ( x = X -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ x = X ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( x + k ) ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) |
38 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
39 |
38
|
adantr |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> dom F = A ) |
40 |
5 39
|
eleqtrrd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( X + k ) e. dom F ) |
41 |
40
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ... N ) ( X + k ) e. dom F ) |
42 |
|
oveq1 |
|- ( y = X -> ( y + k ) = ( X + k ) ) |
43 |
42
|
eleq1d |
|- ( y = X -> ( ( y + k ) e. dom F <-> ( X + k ) e. dom F ) ) |
44 |
43
|
ralbidv |
|- ( y = X -> ( A. k e. ( 0 ... N ) ( y + k ) e. dom F <-> A. k e. ( 0 ... N ) ( X + k ) e. dom F ) ) |
45 |
44
|
elrab |
|- ( X e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } <-> ( X e. CC /\ A. k e. ( 0 ... N ) ( X + k ) e. dom F ) ) |
46 |
4 41 45
|
sylanbrc |
|- ( ph -> X e. { y e. CC | A. k e. ( 0 ... N ) ( y + k ) e. dom F } ) |
47 |
|
sumex |
|- sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. _V |
48 |
47
|
a1i |
|- ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) e. _V ) |
49 |
32 37 46 48
|
fvmptd |
|- ( ph -> ( ( N _/_\^n F ) ` X ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( -u 1 ^ ( N - k ) ) x. ( F ` ( X + k ) ) ) ) ) |