Step |
Hyp |
Ref |
Expression |
1 |
|
fwddifnval.1 |
|
2 |
|
fwddifnval.2 |
|
3 |
|
fwddifnval.3 |
|
4 |
|
fwddifnval.4 |
|
5 |
|
fwddifnval.5 |
|
6 |
|
df-fwddifn |
|
7 |
6
|
a1i |
|
8 |
|
oveq2 |
|
9 |
8
|
adantr |
|
10 |
|
dmeq |
|
11 |
10
|
eleq2d |
|
12 |
11
|
adantl |
|
13 |
9 12
|
raleqbidv |
|
14 |
13
|
rabbidv |
|
15 |
|
oveq1 |
|
16 |
15
|
adantr |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq2d |
|
19 |
|
fveq1 |
|
20 |
18 19
|
oveqan12d |
|
21 |
16 20
|
oveq12d |
|
22 |
21
|
adantr |
|
23 |
9 22
|
sumeq12dv |
|
24 |
14 23
|
mpteq12dv |
|
25 |
24
|
adantl |
|
26 |
|
cnex |
|
27 |
|
elpm2r |
|
28 |
26 26 27
|
mpanl12 |
|
29 |
3 2 28
|
syl2anc |
|
30 |
26
|
mptrabex |
|
31 |
30
|
a1i |
|
32 |
7 25 1 29 31
|
ovmpod |
|
33 |
|
fvoveq1 |
|
34 |
33
|
oveq2d |
|
35 |
34
|
oveq2d |
|
36 |
35
|
sumeq2sdv |
|
37 |
36
|
adantl |
|
38 |
3
|
fdmd |
|
39 |
38
|
adantr |
|
40 |
5 39
|
eleqtrrd |
|
41 |
40
|
ralrimiva |
|
42 |
|
oveq1 |
|
43 |
42
|
eleq1d |
|
44 |
43
|
ralbidv |
|
45 |
44
|
elrab |
|
46 |
4 41 45
|
sylanbrc |
|
47 |
|
sumex |
|
48 |
47
|
a1i |
|
49 |
32 37 46 48
|
fvmptd |
|