Description: The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-gzext | ⊢ AxExt = ( ∀𝑔 2o ( ( 2o ∈𝑔 ∅ ) ↔𝑔 ( 2o ∈𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgze | ⊢ AxExt | |
| 1 | c2o | ⊢ 2o | |
| 2 | cgoe | ⊢ ∈𝑔 | |
| 3 | c0 | ⊢ ∅ | |
| 4 | 1 3 2 | co | ⊢ ( 2o ∈𝑔 ∅ ) |
| 5 | cgob | ⊢ ↔𝑔 | |
| 6 | c1o | ⊢ 1o | |
| 7 | 1 6 2 | co | ⊢ ( 2o ∈𝑔 1o ) |
| 8 | 4 7 5 | co | ⊢ ( ( 2o ∈𝑔 ∅ ) ↔𝑔 ( 2o ∈𝑔 1o ) ) |
| 9 | 8 1 | cgol | ⊢ ∀𝑔 2o ( ( 2o ∈𝑔 ∅ ) ↔𝑔 ( 2o ∈𝑔 1o ) ) |
| 10 | cgoi | ⊢ →𝑔 | |
| 11 | cgoq | ⊢ =𝑔 | |
| 12 | 3 6 11 | co | ⊢ ( ∅ =𝑔 1o ) |
| 13 | 9 12 10 | co | ⊢ ( ∀𝑔 2o ( ( 2o ∈𝑔 ∅ ) ↔𝑔 ( 2o ∈𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) ) |
| 14 | 0 13 | wceq | ⊢ AxExt = ( ∀𝑔 2o ( ( 2o ∈𝑔 ∅ ) ↔𝑔 ( 2o ∈𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) ) |