Metamath Proof Explorer


Definition df-gzext

Description: The Godel-set version of the Axiom of Extensionality. (Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-gzext AxExt = ( ∀𝑔 2o ( ( 2o𝑔 ∅ ) ↔𝑔 ( 2o𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgze AxExt
1 c2o 2o
2 cgoe 𝑔
3 c0
4 1 3 2 co ( 2o𝑔 ∅ )
5 cgob 𝑔
6 c1o 1o
7 1 6 2 co ( 2o𝑔 1o )
8 4 7 5 co ( ( 2o𝑔 ∅ ) ↔𝑔 ( 2o𝑔 1o ) )
9 8 1 cgol 𝑔 2o ( ( 2o𝑔 ∅ ) ↔𝑔 ( 2o𝑔 1o ) )
10 cgoi 𝑔
11 cgoq =𝑔
12 3 6 11 co ( ∅ =𝑔 1o )
13 9 12 10 co ( ∀𝑔 2o ( ( 2o𝑔 ∅ ) ↔𝑔 ( 2o𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) )
14 0 13 wceq AxExt = ( ∀𝑔 2o ( ( 2o𝑔 ∅ ) ↔𝑔 ( 2o𝑔 1o ) ) →𝑔 ( ∅ =𝑔 1o ) )