Metamath Proof Explorer


Definition df-iccp

Description: Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020)

Ref Expression
Assertion df-iccp RePart = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ*m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciccp RePart
1 vm 𝑚
2 cn
3 vp 𝑝
4 cxr *
5 cmap m
6 cc0 0
7 cfz ...
8 1 cv 𝑚
9 6 8 7 co ( 0 ... 𝑚 )
10 4 9 5 co ( ℝ*m ( 0 ... 𝑚 ) )
11 vi 𝑖
12 cfzo ..^
13 6 8 12 co ( 0 ..^ 𝑚 )
14 3 cv 𝑝
15 11 cv 𝑖
16 15 14 cfv ( 𝑝𝑖 )
17 clt <
18 caddc +
19 c1 1
20 15 19 18 co ( 𝑖 + 1 )
21 20 14 cfv ( 𝑝 ‘ ( 𝑖 + 1 ) )
22 16 21 17 wbr ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) )
23 22 11 13 wral 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) )
24 23 3 10 crab { 𝑝 ∈ ( ℝ*m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) }
25 1 2 24 cmpt ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ*m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } )
26 0 25 wceq RePart = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ*m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } )