Description: Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-iccp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ciccp | |
|
1 | vm | |
|
2 | cn | |
|
3 | vp | |
|
4 | cxr | |
|
5 | cmap | |
|
6 | cc0 | |
|
7 | cfz | |
|
8 | 1 | cv | |
9 | 6 8 7 | co | |
10 | 4 9 5 | co | |
11 | vi | |
|
12 | cfzo | |
|
13 | 6 8 12 | co | |
14 | 3 | cv | |
15 | 11 | cv | |
16 | 15 14 | cfv | |
17 | clt | |
|
18 | caddc | |
|
19 | c1 | |
|
20 | 15 19 18 | co | |
21 | 20 14 | cfv | |
22 | 16 21 17 | wbr | |
23 | 22 11 13 | wral | |
24 | 23 3 10 | crab | |
25 | 1 2 24 | cmpt | |
26 | 0 25 | wceq | |