Metamath Proof Explorer


Definition df-iccp

Description: Define partitions of a closed interval of extended reals. Such partitions are finite increasing sequences of extended reals. (Contributed by AV, 8-Jul-2020)

Ref Expression
Assertion df-iccp RePart=mp*0m|i0..^mpi<pi+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 ciccp classRePart
1 vm setvarm
2 cn class
3 vp setvarp
4 cxr class*
5 cmap class𝑚
6 cc0 class0
7 cfz class
8 1 cv setvarm
9 6 8 7 co class0m
10 4 9 5 co class*0m
11 vi setvari
12 cfzo class..^
13 6 8 12 co class0..^m
14 3 cv setvarp
15 11 cv setvari
16 15 14 cfv classpi
17 clt class<
18 caddc class+
19 c1 class1
20 15 19 18 co classi+1
21 20 14 cfv classpi+1
22 16 21 17 wbr wffpi<pi+1
23 22 11 13 wral wffi0..^mpi<pi+1
24 23 3 10 crab classp*0m|i0..^mpi<pi+1
25 1 2 24 cmpt classmp*0m|i0..^mpi<pi+1
26 0 25 wceq wffRePart=mp*0m|i0..^mpi<pi+1