| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ciccp |
|- RePart |
| 1 |
|
vm |
|- m |
| 2 |
|
cn |
|- NN |
| 3 |
|
vp |
|- p |
| 4 |
|
cxr |
|- RR* |
| 5 |
|
cmap |
|- ^m |
| 6 |
|
cc0 |
|- 0 |
| 7 |
|
cfz |
|- ... |
| 8 |
1
|
cv |
|- m |
| 9 |
6 8 7
|
co |
|- ( 0 ... m ) |
| 10 |
4 9 5
|
co |
|- ( RR* ^m ( 0 ... m ) ) |
| 11 |
|
vi |
|- i |
| 12 |
|
cfzo |
|- ..^ |
| 13 |
6 8 12
|
co |
|- ( 0 ..^ m ) |
| 14 |
3
|
cv |
|- p |
| 15 |
11
|
cv |
|- i |
| 16 |
15 14
|
cfv |
|- ( p ` i ) |
| 17 |
|
clt |
|- < |
| 18 |
|
caddc |
|- + |
| 19 |
|
c1 |
|- 1 |
| 20 |
15 19 18
|
co |
|- ( i + 1 ) |
| 21 |
20 14
|
cfv |
|- ( p ` ( i + 1 ) ) |
| 22 |
16 21 17
|
wbr |
|- ( p ` i ) < ( p ` ( i + 1 ) ) |
| 23 |
22 11 13
|
wral |
|- A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) |
| 24 |
23 3 10
|
crab |
|- { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } |
| 25 |
1 2 24
|
cmpt |
|- ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |
| 26 |
0 25
|
wceq |
|- RePart = ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |