| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( m = M -> ( 0 ... m ) = ( 0 ... M ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( m = M -> ( RR* ^m ( 0 ... m ) ) = ( RR* ^m ( 0 ... M ) ) ) | 
						
							| 3 |  | oveq2 |  |-  ( m = M -> ( 0 ..^ m ) = ( 0 ..^ M ) ) | 
						
							| 4 | 3 | raleqdv |  |-  ( m = M -> ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) ) | 
						
							| 5 | 2 4 | rabeqbidv |  |-  ( m = M -> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } = { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) | 
						
							| 6 |  | df-iccp |  |-  RePart = ( m e. NN |-> { p e. ( RR* ^m ( 0 ... m ) ) | A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) | 
						
							| 7 |  | ovex |  |-  ( RR* ^m ( 0 ... M ) ) e. _V | 
						
							| 8 | 7 | rabex |  |-  { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } e. _V | 
						
							| 9 | 5 6 8 | fvmpt |  |-  ( M e. NN -> ( RePart ` M ) = { p e. ( RR* ^m ( 0 ... M ) ) | A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) } ) |