Metamath Proof Explorer


Definition df-igen

Description: Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-igen IdlGen = ( 𝑟 ∈ RingOps , 𝑠 ∈ 𝒫 ran ( 1st𝑟 ) ↦ { 𝑗 ∈ ( Idl ‘ 𝑟 ) ∣ 𝑠𝑗 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigen IdlGen
1 vr 𝑟
2 crngo RingOps
3 vs 𝑠
4 c1st 1st
5 1 cv 𝑟
6 5 4 cfv ( 1st𝑟 )
7 6 crn ran ( 1st𝑟 )
8 7 cpw 𝒫 ran ( 1st𝑟 )
9 vj 𝑗
10 cidl Idl
11 5 10 cfv ( Idl ‘ 𝑟 )
12 3 cv 𝑠
13 9 cv 𝑗
14 12 13 wss 𝑠𝑗
15 14 9 11 crab { 𝑗 ∈ ( Idl ‘ 𝑟 ) ∣ 𝑠𝑗 }
16 15 cint { 𝑗 ∈ ( Idl ‘ 𝑟 ) ∣ 𝑠𝑗 }
17 1 3 2 8 16 cmpo ( 𝑟 ∈ RingOps , 𝑠 ∈ 𝒫 ran ( 1st𝑟 ) ↦ { 𝑗 ∈ ( Idl ‘ 𝑟 ) ∣ 𝑠𝑗 } )
18 0 17 wceq IdlGen = ( 𝑟 ∈ RingOps , 𝑠 ∈ 𝒫 ran ( 1st𝑟 ) ↦ { 𝑗 ∈ ( Idl ‘ 𝑟 ) ∣ 𝑠𝑗 } )