Metamath Proof Explorer


Definition df-igen

Description: Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-igen
|- IdlGen = ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigen
 |-  IdlGen
1 vr
 |-  r
2 crngo
 |-  RingOps
3 vs
 |-  s
4 c1st
 |-  1st
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( 1st ` r )
7 6 crn
 |-  ran ( 1st ` r )
8 7 cpw
 |-  ~P ran ( 1st ` r )
9 vj
 |-  j
10 cidl
 |-  Idl
11 5 10 cfv
 |-  ( Idl ` r )
12 3 cv
 |-  s
13 9 cv
 |-  j
14 12 13 wss
 |-  s C_ j
15 14 9 11 crab
 |-  { j e. ( Idl ` r ) | s C_ j }
16 15 cint
 |-  |^| { j e. ( Idl ` r ) | s C_ j }
17 1 3 2 8 16 cmpo
 |-  ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } )
18 0 17 wceq
 |-  IdlGen = ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } )