Description: Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-igen | |- IdlGen = ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cigen | |- IdlGen |
|
1 | vr | |- r |
|
2 | crngo | |- RingOps |
|
3 | vs | |- s |
|
4 | c1st | |- 1st |
|
5 | 1 | cv | |- r |
6 | 5 4 | cfv | |- ( 1st ` r ) |
7 | 6 | crn | |- ran ( 1st ` r ) |
8 | 7 | cpw | |- ~P ran ( 1st ` r ) |
9 | vj | |- j |
|
10 | cidl | |- Idl |
|
11 | 5 10 | cfv | |- ( Idl ` r ) |
12 | 3 | cv | |- s |
13 | 9 | cv | |- j |
14 | 12 13 | wss | |- s C_ j |
15 | 14 9 11 | crab | |- { j e. ( Idl ` r ) | s C_ j } |
16 | 15 | cint | |- |^| { j e. ( Idl ` r ) | s C_ j } |
17 | 1 3 2 8 16 | cmpo | |- ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } ) |
18 | 0 17 | wceq | |- IdlGen = ( r e. RingOps , s e. ~P ran ( 1st ` r ) |-> |^| { j e. ( Idl ` r ) | s C_ j } ) |