Metamath Proof Explorer


Definition df-igen

Description: Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion df-igen IdlGen = r RingOps , s 𝒫 ran 1 st r j Idl r | s j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cigen class IdlGen
1 vr setvar r
2 crngo class RingOps
3 vs setvar s
4 c1st class 1 st
5 1 cv setvar r
6 5 4 cfv class 1 st r
7 6 crn class ran 1 st r
8 7 cpw class 𝒫 ran 1 st r
9 vj setvar j
10 cidl class Idl
11 5 10 cfv class Idl r
12 3 cv setvar s
13 9 cv setvar j
14 12 13 wss wff s j
15 14 9 11 crab class j Idl r | s j
16 15 cint class j Idl r | s j
17 1 3 2 8 16 cmpo class r RingOps , s 𝒫 ran 1 st r j Idl r | s j
18 0 17 wceq wff IdlGen = r RingOps , s 𝒫 ran 1 st r j Idl r | s j