| Step |
Hyp |
Ref |
Expression |
| 0 |
|
citgo |
⊢ IntgOver |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
2
|
cpw |
⊢ 𝒫 ℂ |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
vp |
⊢ 𝑝 |
| 6 |
|
cply |
⊢ Poly |
| 7 |
1
|
cv |
⊢ 𝑠 |
| 8 |
7 6
|
cfv |
⊢ ( Poly ‘ 𝑠 ) |
| 9 |
5
|
cv |
⊢ 𝑝 |
| 10 |
4
|
cv |
⊢ 𝑥 |
| 11 |
10 9
|
cfv |
⊢ ( 𝑝 ‘ 𝑥 ) |
| 12 |
|
cc0 |
⊢ 0 |
| 13 |
11 12
|
wceq |
⊢ ( 𝑝 ‘ 𝑥 ) = 0 |
| 14 |
|
ccoe |
⊢ coeff |
| 15 |
9 14
|
cfv |
⊢ ( coeff ‘ 𝑝 ) |
| 16 |
|
cdgr |
⊢ deg |
| 17 |
9 16
|
cfv |
⊢ ( deg ‘ 𝑝 ) |
| 18 |
17 15
|
cfv |
⊢ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) |
| 19 |
|
c1 |
⊢ 1 |
| 20 |
18 19
|
wceq |
⊢ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 |
| 21 |
13 20
|
wa |
⊢ ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) |
| 22 |
21 5 8
|
wrex |
⊢ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) |
| 23 |
22 4 2
|
crab |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } |
| 24 |
1 3 23
|
cmpt |
⊢ ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |
| 25 |
0 24
|
wceq |
⊢ IntgOver = ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |