| Step |
Hyp |
Ref |
Expression |
| 0 |
|
citgo |
|- IntgOver |
| 1 |
|
vs |
|- s |
| 2 |
|
cc |
|- CC |
| 3 |
2
|
cpw |
|- ~P CC |
| 4 |
|
vx |
|- x |
| 5 |
|
vp |
|- p |
| 6 |
|
cply |
|- Poly |
| 7 |
1
|
cv |
|- s |
| 8 |
7 6
|
cfv |
|- ( Poly ` s ) |
| 9 |
5
|
cv |
|- p |
| 10 |
4
|
cv |
|- x |
| 11 |
10 9
|
cfv |
|- ( p ` x ) |
| 12 |
|
cc0 |
|- 0 |
| 13 |
11 12
|
wceq |
|- ( p ` x ) = 0 |
| 14 |
|
ccoe |
|- coeff |
| 15 |
9 14
|
cfv |
|- ( coeff ` p ) |
| 16 |
|
cdgr |
|- deg |
| 17 |
9 16
|
cfv |
|- ( deg ` p ) |
| 18 |
17 15
|
cfv |
|- ( ( coeff ` p ) ` ( deg ` p ) ) |
| 19 |
|
c1 |
|- 1 |
| 20 |
18 19
|
wceq |
|- ( ( coeff ` p ) ` ( deg ` p ) ) = 1 |
| 21 |
13 20
|
wa |
|- ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) |
| 22 |
21 5 8
|
wrex |
|- E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) |
| 23 |
22 4 2
|
crab |
|- { x e. CC | E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } |
| 24 |
1 3 23
|
cmpt |
|- ( s e. ~P CC |-> { x e. CC | E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |
| 25 |
0 24
|
wceq |
|- IntgOver = ( s e. ~P CC |-> { x e. CC | E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |