| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabid |
|- ( a e. { a e. CC | E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } <-> ( a e. CC /\ E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
| 2 |
|
qsscn |
|- QQ C_ CC |
| 3 |
|
itgoval |
|- ( QQ C_ CC -> ( IntgOver ` QQ ) = { a e. CC | E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
| 4 |
2 3
|
ax-mp |
|- ( IntgOver ` QQ ) = { a e. CC | E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } |
| 5 |
4
|
eleq2i |
|- ( a e. ( IntgOver ` QQ ) <-> a e. { a e. CC | E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
| 6 |
|
aacn |
|- ( a e. AA -> a e. CC ) |
| 7 |
|
mpaacl |
|- ( a e. AA -> ( minPolyAA ` a ) e. ( Poly ` QQ ) ) |
| 8 |
|
mpaaroot |
|- ( a e. AA -> ( ( minPolyAA ` a ) ` a ) = 0 ) |
| 9 |
|
mpaadgr |
|- ( a e. AA -> ( deg ` ( minPolyAA ` a ) ) = ( degAA ` a ) ) |
| 10 |
9
|
fveq2d |
|- ( a e. AA -> ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) = ( ( coeff ` ( minPolyAA ` a ) ) ` ( degAA ` a ) ) ) |
| 11 |
|
mpaamn |
|- ( a e. AA -> ( ( coeff ` ( minPolyAA ` a ) ) ` ( degAA ` a ) ) = 1 ) |
| 12 |
10 11
|
eqtrd |
|- ( a e. AA -> ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) = 1 ) |
| 13 |
|
fveq1 |
|- ( b = ( minPolyAA ` a ) -> ( b ` a ) = ( ( minPolyAA ` a ) ` a ) ) |
| 14 |
13
|
eqeq1d |
|- ( b = ( minPolyAA ` a ) -> ( ( b ` a ) = 0 <-> ( ( minPolyAA ` a ) ` a ) = 0 ) ) |
| 15 |
|
fveq2 |
|- ( b = ( minPolyAA ` a ) -> ( coeff ` b ) = ( coeff ` ( minPolyAA ` a ) ) ) |
| 16 |
|
fveq2 |
|- ( b = ( minPolyAA ` a ) -> ( deg ` b ) = ( deg ` ( minPolyAA ` a ) ) ) |
| 17 |
15 16
|
fveq12d |
|- ( b = ( minPolyAA ` a ) -> ( ( coeff ` b ) ` ( deg ` b ) ) = ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) ) |
| 18 |
17
|
eqeq1d |
|- ( b = ( minPolyAA ` a ) -> ( ( ( coeff ` b ) ` ( deg ` b ) ) = 1 <-> ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) = 1 ) ) |
| 19 |
14 18
|
anbi12d |
|- ( b = ( minPolyAA ` a ) -> ( ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) <-> ( ( ( minPolyAA ` a ) ` a ) = 0 /\ ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) = 1 ) ) ) |
| 20 |
19
|
rspcev |
|- ( ( ( minPolyAA ` a ) e. ( Poly ` QQ ) /\ ( ( ( minPolyAA ` a ) ` a ) = 0 /\ ( ( coeff ` ( minPolyAA ` a ) ) ` ( deg ` ( minPolyAA ` a ) ) ) = 1 ) ) -> E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) |
| 21 |
7 8 12 20
|
syl12anc |
|- ( a e. AA -> E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) |
| 22 |
6 21
|
jca |
|- ( a e. AA -> ( a e. CC /\ E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
| 23 |
|
simpl |
|- ( ( b e. ( Poly ` QQ ) /\ ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> b e. ( Poly ` QQ ) ) |
| 24 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
| 25 |
24
|
fveq1i |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) |
| 26 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 27 |
|
0nn0 |
|- 0 e. NN0 |
| 28 |
26 27
|
eqeltri |
|- ( deg ` 0p ) e. NN0 |
| 29 |
|
c0ex |
|- 0 e. _V |
| 30 |
29
|
fvconst2 |
|- ( ( deg ` 0p ) e. NN0 -> ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 ) |
| 31 |
28 30
|
ax-mp |
|- ( ( NN0 X. { 0 } ) ` ( deg ` 0p ) ) = 0 |
| 32 |
25 31
|
eqtri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) = 0 |
| 33 |
|
0ne1 |
|- 0 =/= 1 |
| 34 |
32 33
|
eqnetri |
|- ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 |
| 35 |
|
fveq2 |
|- ( b = 0p -> ( coeff ` b ) = ( coeff ` 0p ) ) |
| 36 |
|
fveq2 |
|- ( b = 0p -> ( deg ` b ) = ( deg ` 0p ) ) |
| 37 |
35 36
|
fveq12d |
|- ( b = 0p -> ( ( coeff ` b ) ` ( deg ` b ) ) = ( ( coeff ` 0p ) ` ( deg ` 0p ) ) ) |
| 38 |
37
|
neeq1d |
|- ( b = 0p -> ( ( ( coeff ` b ) ` ( deg ` b ) ) =/= 1 <-> ( ( coeff ` 0p ) ` ( deg ` 0p ) ) =/= 1 ) ) |
| 39 |
34 38
|
mpbiri |
|- ( b = 0p -> ( ( coeff ` b ) ` ( deg ` b ) ) =/= 1 ) |
| 40 |
39
|
necon2i |
|- ( ( ( coeff ` b ) ` ( deg ` b ) ) = 1 -> b =/= 0p ) |
| 41 |
40
|
ad2antll |
|- ( ( b e. ( Poly ` QQ ) /\ ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> b =/= 0p ) |
| 42 |
|
eldifsn |
|- ( b e. ( ( Poly ` QQ ) \ { 0p } ) <-> ( b e. ( Poly ` QQ ) /\ b =/= 0p ) ) |
| 43 |
23 41 42
|
sylanbrc |
|- ( ( b e. ( Poly ` QQ ) /\ ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> b e. ( ( Poly ` QQ ) \ { 0p } ) ) |
| 44 |
|
simprl |
|- ( ( b e. ( Poly ` QQ ) /\ ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> ( b ` a ) = 0 ) |
| 45 |
43 44
|
jca |
|- ( ( b e. ( Poly ` QQ ) /\ ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> ( b e. ( ( Poly ` QQ ) \ { 0p } ) /\ ( b ` a ) = 0 ) ) |
| 46 |
45
|
reximi2 |
|- ( E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) -> E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` a ) = 0 ) |
| 47 |
46
|
anim2i |
|- ( ( a e. CC /\ E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> ( a e. CC /\ E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` a ) = 0 ) ) |
| 48 |
|
elqaa |
|- ( a e. AA <-> ( a e. CC /\ E. b e. ( ( Poly ` QQ ) \ { 0p } ) ( b ` a ) = 0 ) ) |
| 49 |
47 48
|
sylibr |
|- ( ( a e. CC /\ E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) -> a e. AA ) |
| 50 |
22 49
|
impbii |
|- ( a e. AA <-> ( a e. CC /\ E. b e. ( Poly ` QQ ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
| 51 |
1 5 50
|
3bitr4ri |
|- ( a e. AA <-> a e. ( IntgOver ` QQ ) ) |
| 52 |
51
|
eqriv |
|- AA = ( IntgOver ` QQ ) |