Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
|- CC e. _V |
2 |
1
|
elpw2 |
|- ( S e. ~P CC <-> S C_ CC ) |
3 |
|
fveq2 |
|- ( s = S -> ( Poly ` s ) = ( Poly ` S ) ) |
4 |
3
|
rexeqdv |
|- ( s = S -> ( E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) <-> E. p e. ( Poly ` S ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) ) ) |
5 |
4
|
rabbidv |
|- ( s = S -> { x e. CC | E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } = { x e. CC | E. p e. ( Poly ` S ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |
6 |
|
df-itgo |
|- IntgOver = ( s e. ~P CC |-> { x e. CC | E. p e. ( Poly ` s ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |
7 |
1
|
rabex |
|- { x e. CC | E. p e. ( Poly ` S ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } e. _V |
8 |
5 6 7
|
fvmpt |
|- ( S e. ~P CC -> ( IntgOver ` S ) = { x e. CC | E. p e. ( Poly ` S ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |
9 |
2 8
|
sylbir |
|- ( S C_ CC -> ( IntgOver ` S ) = { x e. CC | E. p e. ( Poly ` S ) ( ( p ` x ) = 0 /\ ( ( coeff ` p ) ` ( deg ` p ) ) = 1 ) } ) |