Metamath Proof Explorer


Theorem itgoval

Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion itgoval ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } )

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 1 elpw2 ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ )
3 fveq2 ( 𝑠 = 𝑆 → ( Poly ‘ 𝑠 ) = ( Poly ‘ 𝑆 ) )
4 3 rexeqdv ( 𝑠 = 𝑆 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) ) )
5 4 rabbidv ( 𝑠 = 𝑆 → { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } )
6 df-itgo IntgOver = ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } )
7 1 rabex { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ∈ V
8 5 6 7 fvmpt ( 𝑆 ∈ 𝒫 ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } )
9 2 8 sylbir ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } )