Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
1
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
3 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Poly ‘ 𝑠 ) = ( Poly ‘ 𝑆 ) ) |
4 |
3
|
rexeqdv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) ) ) |
5 |
4
|
rabbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |
6 |
|
df-itgo |
⊢ IntgOver = ( 𝑠 ∈ 𝒫 ℂ ↦ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑠 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |
7 |
1
|
rabex |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |
9 |
2 8
|
sylbir |
⊢ ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑥 ∈ ℂ ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑝 ‘ 𝑥 ) = 0 ∧ ( ( coeff ‘ 𝑝 ) ‘ ( deg ‘ 𝑝 ) ) = 1 ) } ) |