Step |
Hyp |
Ref |
Expression |
1 |
|
plyss |
|- ( ( S C_ T /\ T C_ CC ) -> ( Poly ` S ) C_ ( Poly ` T ) ) |
2 |
|
ssrexv |
|- ( ( Poly ` S ) C_ ( Poly ` T ) -> ( E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) -> E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
3 |
1 2
|
syl |
|- ( ( S C_ T /\ T C_ CC ) -> ( E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) -> E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
4 |
3
|
adantr |
|- ( ( ( S C_ T /\ T C_ CC ) /\ a e. CC ) -> ( E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) -> E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) ) ) |
5 |
4
|
ss2rabdv |
|- ( ( S C_ T /\ T C_ CC ) -> { a e. CC | E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } C_ { a e. CC | E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
6 |
|
sstr |
|- ( ( S C_ T /\ T C_ CC ) -> S C_ CC ) |
7 |
|
itgoval |
|- ( S C_ CC -> ( IntgOver ` S ) = { a e. CC | E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
8 |
6 7
|
syl |
|- ( ( S C_ T /\ T C_ CC ) -> ( IntgOver ` S ) = { a e. CC | E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
9 |
|
itgoval |
|- ( T C_ CC -> ( IntgOver ` T ) = { a e. CC | E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
10 |
9
|
adantl |
|- ( ( S C_ T /\ T C_ CC ) -> ( IntgOver ` T ) = { a e. CC | E. b e. ( Poly ` T ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
11 |
5 8 10
|
3sstr4d |
|- ( ( S C_ T /\ T C_ CC ) -> ( IntgOver ` S ) C_ ( IntgOver ` T ) ) |