Step |
Hyp |
Ref |
Expression |
1 |
|
df-itgo |
|- IntgOver = ( a e. ~P CC |-> { b e. CC | E. c e. ( Poly ` a ) ( ( c ` b ) = 0 /\ ( ( coeff ` c ) ` ( deg ` c ) ) = 1 ) } ) |
2 |
1
|
dmmptss |
|- dom IntgOver C_ ~P CC |
3 |
2
|
sseli |
|- ( S e. dom IntgOver -> S e. ~P CC ) |
4 |
|
cnex |
|- CC e. _V |
5 |
4
|
elpw2 |
|- ( S e. ~P CC <-> S C_ CC ) |
6 |
|
itgoval |
|- ( S C_ CC -> ( IntgOver ` S ) = { a e. CC | E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } ) |
7 |
|
ssrab2 |
|- { a e. CC | E. b e. ( Poly ` S ) ( ( b ` a ) = 0 /\ ( ( coeff ` b ) ` ( deg ` b ) ) = 1 ) } C_ CC |
8 |
6 7
|
eqsstrdi |
|- ( S C_ CC -> ( IntgOver ` S ) C_ CC ) |
9 |
5 8
|
sylbi |
|- ( S e. ~P CC -> ( IntgOver ` S ) C_ CC ) |
10 |
3 9
|
syl |
|- ( S e. dom IntgOver -> ( IntgOver ` S ) C_ CC ) |
11 |
|
ndmfv |
|- ( -. S e. dom IntgOver -> ( IntgOver ` S ) = (/) ) |
12 |
|
0ss |
|- (/) C_ CC |
13 |
11 12
|
eqsstrdi |
|- ( -. S e. dom IntgOver -> ( IntgOver ` S ) C_ CC ) |
14 |
10 13
|
pm2.61i |
|- ( IntgOver ` S ) C_ CC |