Step |
Hyp |
Ref |
Expression |
1 |
|
cnsrexpcl.s |
|- ( ph -> S e. ( SubRing ` CCfld ) ) |
2 |
|
cnsrexpcl.x |
|- ( ph -> X e. S ) |
3 |
|
cnsrexpcl.y |
|- ( ph -> Y e. NN0 ) |
4 |
|
oveq2 |
|- ( a = 0 -> ( X ^ a ) = ( X ^ 0 ) ) |
5 |
4
|
eleq1d |
|- ( a = 0 -> ( ( X ^ a ) e. S <-> ( X ^ 0 ) e. S ) ) |
6 |
5
|
imbi2d |
|- ( a = 0 -> ( ( ph -> ( X ^ a ) e. S ) <-> ( ph -> ( X ^ 0 ) e. S ) ) ) |
7 |
|
oveq2 |
|- ( a = b -> ( X ^ a ) = ( X ^ b ) ) |
8 |
7
|
eleq1d |
|- ( a = b -> ( ( X ^ a ) e. S <-> ( X ^ b ) e. S ) ) |
9 |
8
|
imbi2d |
|- ( a = b -> ( ( ph -> ( X ^ a ) e. S ) <-> ( ph -> ( X ^ b ) e. S ) ) ) |
10 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( X ^ a ) = ( X ^ ( b + 1 ) ) ) |
11 |
10
|
eleq1d |
|- ( a = ( b + 1 ) -> ( ( X ^ a ) e. S <-> ( X ^ ( b + 1 ) ) e. S ) ) |
12 |
11
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ph -> ( X ^ a ) e. S ) <-> ( ph -> ( X ^ ( b + 1 ) ) e. S ) ) ) |
13 |
|
oveq2 |
|- ( a = Y -> ( X ^ a ) = ( X ^ Y ) ) |
14 |
13
|
eleq1d |
|- ( a = Y -> ( ( X ^ a ) e. S <-> ( X ^ Y ) e. S ) ) |
15 |
14
|
imbi2d |
|- ( a = Y -> ( ( ph -> ( X ^ a ) e. S ) <-> ( ph -> ( X ^ Y ) e. S ) ) ) |
16 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
17 |
16
|
subrgss |
|- ( S e. ( SubRing ` CCfld ) -> S C_ CC ) |
18 |
1 17
|
syl |
|- ( ph -> S C_ CC ) |
19 |
18 2
|
sseldd |
|- ( ph -> X e. CC ) |
20 |
19
|
exp0d |
|- ( ph -> ( X ^ 0 ) = 1 ) |
21 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
22 |
21
|
subrg1cl |
|- ( S e. ( SubRing ` CCfld ) -> 1 e. S ) |
23 |
1 22
|
syl |
|- ( ph -> 1 e. S ) |
24 |
20 23
|
eqeltrd |
|- ( ph -> ( X ^ 0 ) e. S ) |
25 |
19
|
3ad2ant2 |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> X e. CC ) |
26 |
|
simp1 |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> b e. NN0 ) |
27 |
25 26
|
expp1d |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> ( X ^ ( b + 1 ) ) = ( ( X ^ b ) x. X ) ) |
28 |
1
|
3ad2ant2 |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> S e. ( SubRing ` CCfld ) ) |
29 |
|
simp3 |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> ( X ^ b ) e. S ) |
30 |
2
|
3ad2ant2 |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> X e. S ) |
31 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
32 |
31
|
subrgmcl |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( X ^ b ) e. S /\ X e. S ) -> ( ( X ^ b ) x. X ) e. S ) |
33 |
28 29 30 32
|
syl3anc |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> ( ( X ^ b ) x. X ) e. S ) |
34 |
27 33
|
eqeltrd |
|- ( ( b e. NN0 /\ ph /\ ( X ^ b ) e. S ) -> ( X ^ ( b + 1 ) ) e. S ) |
35 |
34
|
3exp |
|- ( b e. NN0 -> ( ph -> ( ( X ^ b ) e. S -> ( X ^ ( b + 1 ) ) e. S ) ) ) |
36 |
35
|
a2d |
|- ( b e. NN0 -> ( ( ph -> ( X ^ b ) e. S ) -> ( ph -> ( X ^ ( b + 1 ) ) e. S ) ) ) |
37 |
6 9 12 15 24 36
|
nn0ind |
|- ( Y e. NN0 -> ( ph -> ( X ^ Y ) e. S ) ) |
38 |
3 37
|
mpcom |
|- ( ph -> ( X ^ Y ) e. S ) |