| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcnsrcl.s |
|- ( ph -> S e. ( SubRing ` CCfld ) ) |
| 2 |
|
fsumcnsrcl.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fsumcnsrcl.b |
|- ( ( ph /\ k e. A ) -> B e. S ) |
| 4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 5 |
4
|
subrgss |
|- ( S e. ( SubRing ` CCfld ) -> S C_ CC ) |
| 6 |
1 5
|
syl |
|- ( ph -> S C_ CC ) |
| 7 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 8 |
7
|
subrgacl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. S /\ b e. S ) -> ( a + b ) e. S ) |
| 9 |
8
|
3expb |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( a e. S /\ b e. S ) ) -> ( a + b ) e. S ) |
| 10 |
1 9
|
sylan |
|- ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a + b ) e. S ) |
| 11 |
|
subrgsubg |
|- ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) ) |
| 12 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 13 |
12
|
subg0cl |
|- ( S e. ( SubGrp ` CCfld ) -> 0 e. S ) |
| 14 |
1 11 13
|
3syl |
|- ( ph -> 0 e. S ) |
| 15 |
6 10 2 3 14
|
fsumcllem |
|- ( ph -> sum_ k e. A B e. S ) |