Metamath Proof Explorer


Theorem fsumcnsrcl

Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses fsumcnsrcl.s
|- ( ph -> S e. ( SubRing ` CCfld ) )
fsumcnsrcl.a
|- ( ph -> A e. Fin )
fsumcnsrcl.b
|- ( ( ph /\ k e. A ) -> B e. S )
Assertion fsumcnsrcl
|- ( ph -> sum_ k e. A B e. S )

Proof

Step Hyp Ref Expression
1 fsumcnsrcl.s
 |-  ( ph -> S e. ( SubRing ` CCfld ) )
2 fsumcnsrcl.a
 |-  ( ph -> A e. Fin )
3 fsumcnsrcl.b
 |-  ( ( ph /\ k e. A ) -> B e. S )
4 cnfldbas
 |-  CC = ( Base ` CCfld )
5 4 subrgss
 |-  ( S e. ( SubRing ` CCfld ) -> S C_ CC )
6 1 5 syl
 |-  ( ph -> S C_ CC )
7 cnfldadd
 |-  + = ( +g ` CCfld )
8 7 subrgacl
 |-  ( ( S e. ( SubRing ` CCfld ) /\ a e. S /\ b e. S ) -> ( a + b ) e. S )
9 8 3expb
 |-  ( ( S e. ( SubRing ` CCfld ) /\ ( a e. S /\ b e. S ) ) -> ( a + b ) e. S )
10 1 9 sylan
 |-  ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a + b ) e. S )
11 subrgsubg
 |-  ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) )
12 cnfld0
 |-  0 = ( 0g ` CCfld )
13 12 subg0cl
 |-  ( S e. ( SubGrp ` CCfld ) -> 0 e. S )
14 1 11 13 3syl
 |-  ( ph -> 0 e. S )
15 6 10 2 3 14 fsumcllem
 |-  ( ph -> sum_ k e. A B e. S )