Metamath Proof Explorer


Theorem fsumcnsrcl

Description: Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses fsumcnsrcl.s ( 𝜑𝑆 ∈ ( SubRing ‘ ℂfld ) )
fsumcnsrcl.a ( 𝜑𝐴 ∈ Fin )
fsumcnsrcl.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑆 )
Assertion fsumcnsrcl ( 𝜑 → Σ 𝑘𝐴 𝐵𝑆 )

Proof

Step Hyp Ref Expression
1 fsumcnsrcl.s ( 𝜑𝑆 ∈ ( SubRing ‘ ℂfld ) )
2 fsumcnsrcl.a ( 𝜑𝐴 ∈ Fin )
3 fsumcnsrcl.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑆 )
4 cnfldbas ℂ = ( Base ‘ ℂfld )
5 4 subrgss ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ )
6 1 5 syl ( 𝜑𝑆 ⊆ ℂ )
7 cnfldadd + = ( +g ‘ ℂfld )
8 7 subrgacl ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎𝑆𝑏𝑆 ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 )
9 8 3expb ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑎𝑆𝑏𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 )
10 1 9 sylan ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 )
11 subrgsubg ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ∈ ( SubGrp ‘ ℂfld ) )
12 cnfld0 0 = ( 0g ‘ ℂfld )
13 12 subg0cl ( 𝑆 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑆 )
14 1 11 13 3syl ( 𝜑 → 0 ∈ 𝑆 )
15 6 10 2 3 14 fsumcllem ( 𝜑 → Σ 𝑘𝐴 𝐵𝑆 )