| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcnsrcl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
| 2 |
|
fsumcnsrcl.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fsumcnsrcl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑆 ) |
| 4 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 5 |
4
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 7 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 8 |
7
|
subrgacl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 ) |
| 9 |
8
|
3expb |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 ) |
| 10 |
1 9
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝑆 ) |
| 11 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ∈ ( SubGrp ‘ ℂfld ) ) |
| 12 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 13 |
12
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑆 ) |
| 14 |
1 11 13
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 15 |
6 10 2 3 14
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 ) |