| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsrplycl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
| 2 |
|
cnsrplycl.p |
⊢ ( 𝜑 → 𝑃 ∈ ( Poly ‘ 𝐶 ) ) |
| 3 |
|
cnsrplycl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 4 |
|
cnsrplycl.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) |
| 5 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 6 |
5
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 8 |
|
plyss |
⊢ ( ( 𝐶 ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ ) → ( Poly ‘ 𝐶 ) ⊆ ( Poly ‘ 𝑆 ) ) |
| 9 |
4 7 8
|
syl2anc |
⊢ ( 𝜑 → ( Poly ‘ 𝐶 ) ⊆ ( Poly ‘ 𝑆 ) ) |
| 10 |
9 2
|
sseldd |
⊢ ( 𝜑 → 𝑃 ∈ ( Poly ‘ 𝑆 ) ) |
| 11 |
7 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 12 |
|
eqid |
⊢ ( coeff ‘ 𝑃 ) = ( coeff ‘ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) |
| 14 |
12 13
|
coeid2 |
⊢ ( ( 𝑃 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑋 ∈ ℂ ) → ( 𝑃 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ( ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 15 |
10 11 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ( ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 16 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( deg ‘ 𝑃 ) ) ∈ Fin ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
| 18 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ∈ ( SubGrp ‘ ℂfld ) ) |
| 19 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 20 |
19
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑆 ) |
| 21 |
1 18 20
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 22 |
12
|
coef2 |
⊢ ( ( 𝑃 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → ( coeff ‘ 𝑃 ) : ℕ0 ⟶ 𝑆 ) |
| 23 |
10 21 22
|
syl2anc |
⊢ ( 𝜑 → ( coeff ‘ 𝑃 ) : ℕ0 ⟶ 𝑆 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → ( coeff ‘ 𝑃 ) : ℕ0 ⟶ 𝑆 ) |
| 25 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) → 𝑘 ∈ ℕ0 ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 27 |
24 26
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) ∈ 𝑆 ) |
| 28 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → 𝑋 ∈ 𝑆 ) |
| 29 |
17 28 26
|
cnsrexpcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → ( 𝑋 ↑ 𝑘 ) ∈ 𝑆 ) |
| 30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 31 |
30
|
subrgmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) ∈ 𝑆 ∧ ( 𝑋 ↑ 𝑘 ) ∈ 𝑆 ) → ( ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ 𝑆 ) |
| 32 |
17 27 29 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ) → ( ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ 𝑆 ) |
| 33 |
1 16 32
|
fsumcnsrcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝑃 ) ) ( ( ( coeff ‘ 𝑃 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ∈ 𝑆 ) |
| 34 |
15 33
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑋 ) ∈ 𝑆 ) |