Step |
Hyp |
Ref |
Expression |
1 |
|
cnsrexpcl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
2 |
|
cnsrexpcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
3 |
|
cnsrexpcl.y |
⊢ ( 𝜑 → 𝑌 ∈ ℕ0 ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝑋 ↑ 𝑎 ) = ( 𝑋 ↑ 0 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑎 = 0 → ( ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ 0 ) ∈ 𝑆 ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝜑 → ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ 𝑆 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑋 ↑ 𝑎 ) = ( 𝑋 ↑ 𝑏 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑋 ↑ 𝑎 ) = ( 𝑋 ↑ ( 𝑏 + 1 ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝜑 → ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑎 = 𝑌 → ( 𝑋 ↑ 𝑎 ) = ( 𝑋 ↑ 𝑌 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ 𝑌 ) ∈ 𝑆 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝜑 → ( 𝑋 ↑ 𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ 𝑌 ) ∈ 𝑆 ) ) ) |
16 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
16
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
19 |
18 2
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
20 |
19
|
exp0d |
⊢ ( 𝜑 → ( 𝑋 ↑ 0 ) = 1 ) |
21 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
22 |
21
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝑆 ) |
23 |
1 22
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
24 |
20 23
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ 𝑆 ) |
25 |
19
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → 𝑋 ∈ ℂ ) |
26 |
|
simp1 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → 𝑏 ∈ ℕ0 ) |
27 |
25 26
|
expp1d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → ( 𝑋 ↑ ( 𝑏 + 1 ) ) = ( ( 𝑋 ↑ 𝑏 ) · 𝑋 ) ) |
28 |
1
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
29 |
|
simp3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) |
30 |
2
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
31 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
32 |
31
|
subrgmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝑋 ↑ 𝑏 ) · 𝑋 ) ∈ 𝑆 ) |
33 |
28 29 30 32
|
syl3anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → ( ( 𝑋 ↑ 𝑏 ) · 𝑋 ) ∈ 𝑆 ) |
34 |
27 33
|
eqeltrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) |
35 |
34
|
3exp |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝜑 → ( ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) ) |
36 |
35
|
a2d |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝜑 → ( 𝑋 ↑ 𝑏 ) ∈ 𝑆 ) → ( 𝜑 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) ) |
37 |
6 9 12 15 24 36
|
nn0ind |
⊢ ( 𝑌 ∈ ℕ0 → ( 𝜑 → ( 𝑋 ↑ 𝑌 ) ∈ 𝑆 ) ) |
38 |
3 37
|
mpcom |
⊢ ( 𝜑 → ( 𝑋 ↑ 𝑌 ) ∈ 𝑆 ) |