Metamath Proof Explorer


Theorem cnsrexpcl

Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses cnsrexpcl.s ( 𝜑𝑆 ∈ ( SubRing ‘ ℂfld ) )
cnsrexpcl.x ( 𝜑𝑋𝑆 )
cnsrexpcl.y ( 𝜑𝑌 ∈ ℕ0 )
Assertion cnsrexpcl ( 𝜑 → ( 𝑋𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 cnsrexpcl.s ( 𝜑𝑆 ∈ ( SubRing ‘ ℂfld ) )
2 cnsrexpcl.x ( 𝜑𝑋𝑆 )
3 cnsrexpcl.y ( 𝜑𝑌 ∈ ℕ0 )
4 oveq2 ( 𝑎 = 0 → ( 𝑋𝑎 ) = ( 𝑋 ↑ 0 ) )
5 4 eleq1d ( 𝑎 = 0 → ( ( 𝑋𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ 0 ) ∈ 𝑆 ) )
6 5 imbi2d ( 𝑎 = 0 → ( ( 𝜑 → ( 𝑋𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ 𝑆 ) ) )
7 oveq2 ( 𝑎 = 𝑏 → ( 𝑋𝑎 ) = ( 𝑋𝑏 ) )
8 7 eleq1d ( 𝑎 = 𝑏 → ( ( 𝑋𝑎 ) ∈ 𝑆 ↔ ( 𝑋𝑏 ) ∈ 𝑆 ) )
9 8 imbi2d ( 𝑎 = 𝑏 → ( ( 𝜑 → ( 𝑋𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋𝑏 ) ∈ 𝑆 ) ) )
10 oveq2 ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑋𝑎 ) = ( 𝑋 ↑ ( 𝑏 + 1 ) ) )
11 10 eleq1d ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝑋𝑎 ) ∈ 𝑆 ↔ ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) )
12 11 imbi2d ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝜑 → ( 𝑋𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) )
13 oveq2 ( 𝑎 = 𝑌 → ( 𝑋𝑎 ) = ( 𝑋𝑌 ) )
14 13 eleq1d ( 𝑎 = 𝑌 → ( ( 𝑋𝑎 ) ∈ 𝑆 ↔ ( 𝑋𝑌 ) ∈ 𝑆 ) )
15 14 imbi2d ( 𝑎 = 𝑌 → ( ( 𝜑 → ( 𝑋𝑎 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝑋𝑌 ) ∈ 𝑆 ) ) )
16 cnfldbas ℂ = ( Base ‘ ℂfld )
17 16 subrgss ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ )
18 1 17 syl ( 𝜑𝑆 ⊆ ℂ )
19 18 2 sseldd ( 𝜑𝑋 ∈ ℂ )
20 19 exp0d ( 𝜑 → ( 𝑋 ↑ 0 ) = 1 )
21 cnfld1 1 = ( 1r ‘ ℂfld )
22 21 subrg1cl ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝑆 )
23 1 22 syl ( 𝜑 → 1 ∈ 𝑆 )
24 20 23 eqeltrd ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ 𝑆 )
25 19 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → 𝑋 ∈ ℂ )
26 simp1 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → 𝑏 ∈ ℕ0 )
27 25 26 expp1d ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → ( 𝑋 ↑ ( 𝑏 + 1 ) ) = ( ( 𝑋𝑏 ) · 𝑋 ) )
28 1 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubRing ‘ ℂfld ) )
29 simp3 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → ( 𝑋𝑏 ) ∈ 𝑆 )
30 2 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → 𝑋𝑆 )
31 cnfldmul · = ( .r ‘ ℂfld )
32 31 subrgmcl ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑋𝑏 ) ∈ 𝑆𝑋𝑆 ) → ( ( 𝑋𝑏 ) · 𝑋 ) ∈ 𝑆 )
33 28 29 30 32 syl3anc ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → ( ( 𝑋𝑏 ) · 𝑋 ) ∈ 𝑆 )
34 27 33 eqeltrd ( ( 𝑏 ∈ ℕ0𝜑 ∧ ( 𝑋𝑏 ) ∈ 𝑆 ) → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 )
35 34 3exp ( 𝑏 ∈ ℕ0 → ( 𝜑 → ( ( 𝑋𝑏 ) ∈ 𝑆 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) )
36 35 a2d ( 𝑏 ∈ ℕ0 → ( ( 𝜑 → ( 𝑋𝑏 ) ∈ 𝑆 ) → ( 𝜑 → ( 𝑋 ↑ ( 𝑏 + 1 ) ) ∈ 𝑆 ) ) )
37 6 9 12 15 24 36 nn0ind ( 𝑌 ∈ ℕ0 → ( 𝜑 → ( 𝑋𝑌 ) ∈ 𝑆 ) )
38 3 37 mpcom ( 𝜑 → ( 𝑋𝑌 ) ∈ 𝑆 )