| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsrexpcl.s |
|
| 2 |
|
cnsrexpcl.x |
|
| 3 |
|
cnsrexpcl.y |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
cnfldbas |
|
| 17 |
16
|
subrgss |
|
| 18 |
1 17
|
syl |
|
| 19 |
18 2
|
sseldd |
|
| 20 |
19
|
exp0d |
|
| 21 |
|
cnfld1 |
|
| 22 |
21
|
subrg1cl |
|
| 23 |
1 22
|
syl |
|
| 24 |
20 23
|
eqeltrd |
|
| 25 |
19
|
3ad2ant2 |
|
| 26 |
|
simp1 |
|
| 27 |
25 26
|
expp1d |
|
| 28 |
1
|
3ad2ant2 |
|
| 29 |
|
simp3 |
|
| 30 |
2
|
3ad2ant2 |
|
| 31 |
|
cnfldmul |
|
| 32 |
31
|
subrgmcl |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
27 33
|
eqeltrd |
|
| 35 |
34
|
3exp |
|
| 36 |
35
|
a2d |
|
| 37 |
6 9 12 15 24 36
|
nn0ind |
|
| 38 |
3 37
|
mpcom |
|