Step |
Hyp |
Ref |
Expression |
1 |
|
cnsrexpcl.s |
|
2 |
|
cnsrexpcl.x |
|
3 |
|
cnsrexpcl.y |
|
4 |
|
oveq2 |
|
5 |
4
|
eleq1d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
7
|
eleq1d |
|
9 |
8
|
imbi2d |
|
10 |
|
oveq2 |
|
11 |
10
|
eleq1d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
eleq1d |
|
15 |
14
|
imbi2d |
|
16 |
|
cnfldbas |
|
17 |
16
|
subrgss |
|
18 |
1 17
|
syl |
|
19 |
18 2
|
sseldd |
|
20 |
19
|
exp0d |
|
21 |
|
cnfld1 |
|
22 |
21
|
subrg1cl |
|
23 |
1 22
|
syl |
|
24 |
20 23
|
eqeltrd |
|
25 |
19
|
3ad2ant2 |
|
26 |
|
simp1 |
|
27 |
25 26
|
expp1d |
|
28 |
1
|
3ad2ant2 |
|
29 |
|
simp3 |
|
30 |
2
|
3ad2ant2 |
|
31 |
|
cnfldmul |
|
32 |
31
|
subrgmcl |
|
33 |
28 29 30 32
|
syl3anc |
|
34 |
27 33
|
eqeltrd |
|
35 |
34
|
3exp |
|
36 |
35
|
a2d |
|
37 |
6 9 12 15 24 36
|
nn0ind |
|
38 |
3 37
|
mpcom |
|