Metamath Proof Explorer


Theorem cnsrplycl

Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses cnsrplycl.s φSSubRingfld
cnsrplycl.p φPPolyC
cnsrplycl.x φXS
cnsrplycl.c φCS
Assertion cnsrplycl φPXS

Proof

Step Hyp Ref Expression
1 cnsrplycl.s φSSubRingfld
2 cnsrplycl.p φPPolyC
3 cnsrplycl.x φXS
4 cnsrplycl.c φCS
5 cnfldbas =Basefld
6 5 subrgss SSubRingfldS
7 1 6 syl φS
8 plyss CSSPolyCPolyS
9 4 7 8 syl2anc φPolyCPolyS
10 9 2 sseldd φPPolyS
11 7 3 sseldd φX
12 eqid coeffP=coeffP
13 eqid degP=degP
14 12 13 coeid2 PPolySXPX=k=0degPcoeffPkXk
15 10 11 14 syl2anc φPX=k=0degPcoeffPkXk
16 fzfid φ0degPFin
17 1 adantr φk0degPSSubRingfld
18 subrgsubg SSubRingfldSSubGrpfld
19 cnfld0 0=0fld
20 19 subg0cl SSubGrpfld0S
21 1 18 20 3syl φ0S
22 12 coef2 PPolyS0ScoeffP:0S
23 10 21 22 syl2anc φcoeffP:0S
24 23 adantr φk0degPcoeffP:0S
25 elfznn0 k0degPk0
26 25 adantl φk0degPk0
27 24 26 ffvelcdmd φk0degPcoeffPkS
28 3 adantr φk0degPXS
29 17 28 26 cnsrexpcl φk0degPXkS
30 cnfldmul ×=fld
31 30 subrgmcl SSubRingfldcoeffPkSXkScoeffPkXkS
32 17 27 29 31 syl3anc φk0degPcoeffPkXkS
33 1 16 32 fsumcnsrcl φk=0degPcoeffPkXkS
34 15 33 eqeltrd φPXS