Step |
Hyp |
Ref |
Expression |
1 |
|
cnsrplycl.s |
|
2 |
|
cnsrplycl.p |
|
3 |
|
cnsrplycl.x |
|
4 |
|
cnsrplycl.c |
|
5 |
|
cnfldbas |
|
6 |
5
|
subrgss |
|
7 |
1 6
|
syl |
|
8 |
|
plyss |
|
9 |
4 7 8
|
syl2anc |
|
10 |
9 2
|
sseldd |
|
11 |
7 3
|
sseldd |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
coeid2 |
|
15 |
10 11 14
|
syl2anc |
|
16 |
|
fzfid |
|
17 |
1
|
adantr |
|
18 |
|
subrgsubg |
|
19 |
|
cnfld0 |
|
20 |
19
|
subg0cl |
|
21 |
1 18 20
|
3syl |
|
22 |
12
|
coef2 |
|
23 |
10 21 22
|
syl2anc |
|
24 |
23
|
adantr |
|
25 |
|
elfznn0 |
|
26 |
25
|
adantl |
|
27 |
24 26
|
ffvelrnd |
|
28 |
3
|
adantr |
|
29 |
17 28 26
|
cnsrexpcl |
|
30 |
|
cnfldmul |
|
31 |
30
|
subrgmcl |
|
32 |
17 27 29 31
|
syl3anc |
|
33 |
1 16 32
|
fsumcnsrcl |
|
34 |
15 33
|
eqeltrd |
|