Metamath Proof Explorer


Theorem cnsrplycl

Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses cnsrplycl.s φ S SubRing fld
cnsrplycl.p φ P Poly C
cnsrplycl.x φ X S
cnsrplycl.c φ C S
Assertion cnsrplycl φ P X S

Proof

Step Hyp Ref Expression
1 cnsrplycl.s φ S SubRing fld
2 cnsrplycl.p φ P Poly C
3 cnsrplycl.x φ X S
4 cnsrplycl.c φ C S
5 cnfldbas = Base fld
6 5 subrgss S SubRing fld S
7 1 6 syl φ S
8 plyss C S S Poly C Poly S
9 4 7 8 syl2anc φ Poly C Poly S
10 9 2 sseldd φ P Poly S
11 7 3 sseldd φ X
12 eqid coeff P = coeff P
13 eqid deg P = deg P
14 12 13 coeid2 P Poly S X P X = k = 0 deg P coeff P k X k
15 10 11 14 syl2anc φ P X = k = 0 deg P coeff P k X k
16 fzfid φ 0 deg P Fin
17 1 adantr φ k 0 deg P S SubRing fld
18 subrgsubg S SubRing fld S SubGrp fld
19 cnfld0 0 = 0 fld
20 19 subg0cl S SubGrp fld 0 S
21 1 18 20 3syl φ 0 S
22 12 coef2 P Poly S 0 S coeff P : 0 S
23 10 21 22 syl2anc φ coeff P : 0 S
24 23 adantr φ k 0 deg P coeff P : 0 S
25 elfznn0 k 0 deg P k 0
26 25 adantl φ k 0 deg P k 0
27 24 26 ffvelrnd φ k 0 deg P coeff P k S
28 3 adantr φ k 0 deg P X S
29 17 28 26 cnsrexpcl φ k 0 deg P X k S
30 cnfldmul × = fld
31 30 subrgmcl S SubRing fld coeff P k S X k S coeff P k X k S
32 17 27 29 31 syl3anc φ k 0 deg P coeff P k X k S
33 1 16 32 fsumcnsrcl φ k = 0 deg P coeff P k X k S
34 15 33 eqeltrd φ P X S