| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsrplycl.s |
|
| 2 |
|
cnsrplycl.p |
|
| 3 |
|
cnsrplycl.x |
|
| 4 |
|
cnsrplycl.c |
|
| 5 |
|
cnfldbas |
|
| 6 |
5
|
subrgss |
|
| 7 |
1 6
|
syl |
|
| 8 |
|
plyss |
|
| 9 |
4 7 8
|
syl2anc |
|
| 10 |
9 2
|
sseldd |
|
| 11 |
7 3
|
sseldd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
coeid2 |
|
| 15 |
10 11 14
|
syl2anc |
|
| 16 |
|
fzfid |
|
| 17 |
1
|
adantr |
|
| 18 |
|
subrgsubg |
|
| 19 |
|
cnfld0 |
|
| 20 |
19
|
subg0cl |
|
| 21 |
1 18 20
|
3syl |
|
| 22 |
12
|
coef2 |
|
| 23 |
10 21 22
|
syl2anc |
|
| 24 |
23
|
adantr |
|
| 25 |
|
elfznn0 |
|
| 26 |
25
|
adantl |
|
| 27 |
24 26
|
ffvelcdmd |
|
| 28 |
3
|
adantr |
|
| 29 |
17 28 26
|
cnsrexpcl |
|
| 30 |
|
cnfldmul |
|
| 31 |
30
|
subrgmcl |
|
| 32 |
17 27 29 31
|
syl3anc |
|
| 33 |
1 16 32
|
fsumcnsrcl |
|
| 34 |
15 33
|
eqeltrd |
|