Metamath Proof Explorer


Theorem rgspnval

Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses rgspnval.r φ R Ring
rgspnval.b φ B = Base R
rgspnval.ss φ A B
rgspnval.n φ N = RingSpan R
rgspnval.sp φ U = N A
Assertion rgspnval φ U = t SubRing R | A t

Proof

Step Hyp Ref Expression
1 rgspnval.r φ R Ring
2 rgspnval.b φ B = Base R
3 rgspnval.ss φ A B
4 rgspnval.n φ N = RingSpan R
5 rgspnval.sp φ U = N A
6 4 fveq1d φ N A = RingSpan R A
7 elex R Ring R V
8 fveq2 a = R Base a = Base R
9 8 pweqd a = R 𝒫 Base a = 𝒫 Base R
10 fveq2 a = R SubRing a = SubRing R
11 rabeq SubRing a = SubRing R t SubRing a | b t = t SubRing R | b t
12 10 11 syl a = R t SubRing a | b t = t SubRing R | b t
13 12 inteqd a = R t SubRing a | b t = t SubRing R | b t
14 9 13 mpteq12dv a = R b 𝒫 Base a t SubRing a | b t = b 𝒫 Base R t SubRing R | b t
15 df-rgspn RingSpan = a V b 𝒫 Base a t SubRing a | b t
16 fvex Base R V
17 16 pwex 𝒫 Base R V
18 17 mptex b 𝒫 Base R t SubRing R | b t V
19 14 15 18 fvmpt R V RingSpan R = b 𝒫 Base R t SubRing R | b t
20 1 7 19 3syl φ RingSpan R = b 𝒫 Base R t SubRing R | b t
21 20 fveq1d φ RingSpan R A = b 𝒫 Base R t SubRing R | b t A
22 eqid b 𝒫 Base R t SubRing R | b t = b 𝒫 Base R t SubRing R | b t
23 sseq1 b = A b t A t
24 23 rabbidv b = A t SubRing R | b t = t SubRing R | A t
25 24 inteqd b = A t SubRing R | b t = t SubRing R | A t
26 3 2 sseqtrd φ A Base R
27 16 elpw2 A 𝒫 Base R A Base R
28 26 27 sylibr φ A 𝒫 Base R
29 eqid Base R = Base R
30 29 subrgid R Ring Base R SubRing R
31 1 30 syl φ Base R SubRing R
32 2 31 eqeltrd φ B SubRing R
33 sseq2 t = B A t A B
34 33 rspcev B SubRing R A B t SubRing R A t
35 32 3 34 syl2anc φ t SubRing R A t
36 intexrab t SubRing R A t t SubRing R | A t V
37 35 36 sylib φ t SubRing R | A t V
38 22 25 28 37 fvmptd3 φ b 𝒫 Base R t SubRing R | b t A = t SubRing R | A t
39 21 38 eqtrd φ RingSpan R A = t SubRing R | A t
40 5 6 39 3eqtrd φ U = t SubRing R | A t