| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgspnval.r |
|- ( ph -> R e. Ring ) |
| 2 |
|
rgspnval.b |
|- ( ph -> B = ( Base ` R ) ) |
| 3 |
|
rgspnval.ss |
|- ( ph -> A C_ B ) |
| 4 |
|
rgspnval.n |
|- ( ph -> N = ( RingSpan ` R ) ) |
| 5 |
|
rgspnval.sp |
|- ( ph -> U = ( N ` A ) ) |
| 6 |
4
|
fveq1d |
|- ( ph -> ( N ` A ) = ( ( RingSpan ` R ) ` A ) ) |
| 7 |
|
elex |
|- ( R e. Ring -> R e. _V ) |
| 8 |
|
fveq2 |
|- ( a = R -> ( Base ` a ) = ( Base ` R ) ) |
| 9 |
8
|
pweqd |
|- ( a = R -> ~P ( Base ` a ) = ~P ( Base ` R ) ) |
| 10 |
|
fveq2 |
|- ( a = R -> ( SubRing ` a ) = ( SubRing ` R ) ) |
| 11 |
|
rabeq |
|- ( ( SubRing ` a ) = ( SubRing ` R ) -> { t e. ( SubRing ` a ) | b C_ t } = { t e. ( SubRing ` R ) | b C_ t } ) |
| 12 |
10 11
|
syl |
|- ( a = R -> { t e. ( SubRing ` a ) | b C_ t } = { t e. ( SubRing ` R ) | b C_ t } ) |
| 13 |
12
|
inteqd |
|- ( a = R -> |^| { t e. ( SubRing ` a ) | b C_ t } = |^| { t e. ( SubRing ` R ) | b C_ t } ) |
| 14 |
9 13
|
mpteq12dv |
|- ( a = R -> ( b e. ~P ( Base ` a ) |-> |^| { t e. ( SubRing ` a ) | b C_ t } ) = ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) ) |
| 15 |
|
df-rgspn |
|- RingSpan = ( a e. _V |-> ( b e. ~P ( Base ` a ) |-> |^| { t e. ( SubRing ` a ) | b C_ t } ) ) |
| 16 |
|
fvex |
|- ( Base ` R ) e. _V |
| 17 |
16
|
pwex |
|- ~P ( Base ` R ) e. _V |
| 18 |
17
|
mptex |
|- ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) e. _V |
| 19 |
14 15 18
|
fvmpt |
|- ( R e. _V -> ( RingSpan ` R ) = ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) ) |
| 20 |
1 7 19
|
3syl |
|- ( ph -> ( RingSpan ` R ) = ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) ) |
| 21 |
20
|
fveq1d |
|- ( ph -> ( ( RingSpan ` R ) ` A ) = ( ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) ` A ) ) |
| 22 |
|
eqid |
|- ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) = ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) |
| 23 |
|
sseq1 |
|- ( b = A -> ( b C_ t <-> A C_ t ) ) |
| 24 |
23
|
rabbidv |
|- ( b = A -> { t e. ( SubRing ` R ) | b C_ t } = { t e. ( SubRing ` R ) | A C_ t } ) |
| 25 |
24
|
inteqd |
|- ( b = A -> |^| { t e. ( SubRing ` R ) | b C_ t } = |^| { t e. ( SubRing ` R ) | A C_ t } ) |
| 26 |
3 2
|
sseqtrd |
|- ( ph -> A C_ ( Base ` R ) ) |
| 27 |
16
|
elpw2 |
|- ( A e. ~P ( Base ` R ) <-> A C_ ( Base ` R ) ) |
| 28 |
26 27
|
sylibr |
|- ( ph -> A e. ~P ( Base ` R ) ) |
| 29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 30 |
29
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 31 |
1 30
|
syl |
|- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 32 |
2 31
|
eqeltrd |
|- ( ph -> B e. ( SubRing ` R ) ) |
| 33 |
|
sseq2 |
|- ( t = B -> ( A C_ t <-> A C_ B ) ) |
| 34 |
33
|
rspcev |
|- ( ( B e. ( SubRing ` R ) /\ A C_ B ) -> E. t e. ( SubRing ` R ) A C_ t ) |
| 35 |
32 3 34
|
syl2anc |
|- ( ph -> E. t e. ( SubRing ` R ) A C_ t ) |
| 36 |
|
intexrab |
|- ( E. t e. ( SubRing ` R ) A C_ t <-> |^| { t e. ( SubRing ` R ) | A C_ t } e. _V ) |
| 37 |
35 36
|
sylib |
|- ( ph -> |^| { t e. ( SubRing ` R ) | A C_ t } e. _V ) |
| 38 |
22 25 28 37
|
fvmptd3 |
|- ( ph -> ( ( b e. ~P ( Base ` R ) |-> |^| { t e. ( SubRing ` R ) | b C_ t } ) ` A ) = |^| { t e. ( SubRing ` R ) | A C_ t } ) |
| 39 |
21 38
|
eqtrd |
|- ( ph -> ( ( RingSpan ` R ) ` A ) = |^| { t e. ( SubRing ` R ) | A C_ t } ) |
| 40 |
5 6 39
|
3eqtrd |
|- ( ph -> U = |^| { t e. ( SubRing ` R ) | A C_ t } ) |