Step |
Hyp |
Ref |
Expression |
1 |
|
rgspnval.r |
|- ( ph -> R e. Ring ) |
2 |
|
rgspnval.b |
|- ( ph -> B = ( Base ` R ) ) |
3 |
|
rgspnval.ss |
|- ( ph -> A C_ B ) |
4 |
|
rgspnval.n |
|- ( ph -> N = ( RingSpan ` R ) ) |
5 |
|
rgspnval.sp |
|- ( ph -> U = ( N ` A ) ) |
6 |
1 2 3 4 5
|
rgspnval |
|- ( ph -> U = |^| { t e. ( SubRing ` R ) | A C_ t } ) |
7 |
|
ssrab2 |
|- { t e. ( SubRing ` R ) | A C_ t } C_ ( SubRing ` R ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8
|
subrgid |
|- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
11 |
2 10
|
eqeltrd |
|- ( ph -> B e. ( SubRing ` R ) ) |
12 |
|
sseq2 |
|- ( t = B -> ( A C_ t <-> A C_ B ) ) |
13 |
12
|
rspcev |
|- ( ( B e. ( SubRing ` R ) /\ A C_ B ) -> E. t e. ( SubRing ` R ) A C_ t ) |
14 |
11 3 13
|
syl2anc |
|- ( ph -> E. t e. ( SubRing ` R ) A C_ t ) |
15 |
|
rabn0 |
|- ( { t e. ( SubRing ` R ) | A C_ t } =/= (/) <-> E. t e. ( SubRing ` R ) A C_ t ) |
16 |
14 15
|
sylibr |
|- ( ph -> { t e. ( SubRing ` R ) | A C_ t } =/= (/) ) |
17 |
|
subrgint |
|- ( ( { t e. ( SubRing ` R ) | A C_ t } C_ ( SubRing ` R ) /\ { t e. ( SubRing ` R ) | A C_ t } =/= (/) ) -> |^| { t e. ( SubRing ` R ) | A C_ t } e. ( SubRing ` R ) ) |
18 |
7 16 17
|
sylancr |
|- ( ph -> |^| { t e. ( SubRing ` R ) | A C_ t } e. ( SubRing ` R ) ) |
19 |
6 18
|
eqeltrd |
|- ( ph -> U e. ( SubRing ` R ) ) |