Step |
Hyp |
Ref |
Expression |
1 |
|
rgspnval.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
2 |
|
rgspnval.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
3 |
|
rgspnval.ss |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
4 |
|
rgspnval.n |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝑅 ) ) |
5 |
|
rgspnval.sp |
⊢ ( 𝜑 → 𝑈 = ( 𝑁 ‘ 𝐴 ) ) |
6 |
1 2 3 4 5
|
rgspnval |
⊢ ( 𝜑 → 𝑈 = ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ) |
7 |
|
ssrab2 |
⊢ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
8
|
subrgid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
11 |
2 10
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
12 |
|
sseq2 |
⊢ ( 𝑡 = 𝐵 → ( 𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵 ) ) |
13 |
12
|
rspcev |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐴 ⊆ 𝐵 ) → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
14 |
11 3 13
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
15 |
|
rabn0 |
⊢ ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ↔ ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝜑 → { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ) |
17 |
|
subrgint |
⊢ ( ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑅 ) ∧ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ) → ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑅 ) ) |
18 |
7 16 17
|
sylancr |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑅 ) ) |
19 |
6 18
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑅 ) ) |