Metamath Proof Explorer


Theorem rgspncl

Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses rgspnval.r ( 𝜑𝑅 ∈ Ring )
rgspnval.b ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
rgspnval.ss ( 𝜑𝐴𝐵 )
rgspnval.n ( 𝜑𝑁 = ( RingSpan ‘ 𝑅 ) )
rgspnval.sp ( 𝜑𝑈 = ( 𝑁𝐴 ) )
Assertion rgspncl ( 𝜑𝑈 ∈ ( SubRing ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 rgspnval.r ( 𝜑𝑅 ∈ Ring )
2 rgspnval.b ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
3 rgspnval.ss ( 𝜑𝐴𝐵 )
4 rgspnval.n ( 𝜑𝑁 = ( RingSpan ‘ 𝑅 ) )
5 rgspnval.sp ( 𝜑𝑈 = ( 𝑁𝐴 ) )
6 1 2 3 4 5 rgspnval ( 𝜑𝑈 = { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } )
7 ssrab2 { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ⊆ ( SubRing ‘ 𝑅 )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 8 subrgid ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
10 1 9 syl ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
11 2 10 eqeltrd ( 𝜑𝐵 ∈ ( SubRing ‘ 𝑅 ) )
12 sseq2 ( 𝑡 = 𝐵 → ( 𝐴𝑡𝐴𝐵 ) )
13 12 rspcev ( ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐴𝐵 ) → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴𝑡 )
14 11 3 13 syl2anc ( 𝜑 → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴𝑡 )
15 rabn0 ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ≠ ∅ ↔ ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴𝑡 )
16 14 15 sylibr ( 𝜑 → { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ≠ ∅ )
17 subrgint ( ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ⊆ ( SubRing ‘ 𝑅 ) ∧ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ≠ ∅ ) → { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ∈ ( SubRing ‘ 𝑅 ) )
18 7 16 17 sylancr ( 𝜑 { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴𝑡 } ∈ ( SubRing ‘ 𝑅 ) )
19 6 18 eqeltrd ( 𝜑𝑈 ∈ ( SubRing ‘ 𝑅 ) )