| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgspnval.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 2 |
|
rgspnval.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
rgspnval.ss |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 4 |
|
rgspnval.n |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝑅 ) ) |
| 5 |
|
rgspnval.sp |
⊢ ( 𝜑 → 𝑈 = ( 𝑁 ‘ 𝐴 ) ) |
| 6 |
1 2 3 4 5
|
rgspnval |
⊢ ( 𝜑 → 𝑈 = ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ) |
| 7 |
|
ssrab2 |
⊢ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
8
|
subrgid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 11 |
2 10
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 12 |
|
sseq2 |
⊢ ( 𝑡 = 𝐵 → ( 𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵 ) ) |
| 13 |
12
|
rspcev |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐴 ⊆ 𝐵 ) → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
| 14 |
11 3 13
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
| 15 |
|
rabn0 |
⊢ ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ↔ ∃ 𝑡 ∈ ( SubRing ‘ 𝑅 ) 𝐴 ⊆ 𝑡 ) |
| 16 |
14 15
|
sylibr |
⊢ ( 𝜑 → { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ) |
| 17 |
|
subrgint |
⊢ ( ( { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑅 ) ∧ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ≠ ∅ ) → ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑅 ) ) |
| 18 |
7 16 17
|
sylancr |
⊢ ( 𝜑 → ∩ { 𝑡 ∈ ( SubRing ‘ 𝑅 ) ∣ 𝐴 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑅 ) ) |
| 19 |
6 18
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑅 ) ) |