Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rgspnval.r | |
|
rgspnval.b | |
||
rgspnval.ss | |
||
rgspnval.n | |
||
rgspnval.sp | |
||
Assertion | rgspncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgspnval.r | |
|
2 | rgspnval.b | |
|
3 | rgspnval.ss | |
|
4 | rgspnval.n | |
|
5 | rgspnval.sp | |
|
6 | 1 2 3 4 5 | rgspnval | |
7 | ssrab2 | |
|
8 | eqid | |
|
9 | 8 | subrgid | |
10 | 1 9 | syl | |
11 | 2 10 | eqeltrd | |
12 | sseq2 | |
|
13 | 12 | rspcev | |
14 | 11 3 13 | syl2anc | |
15 | rabn0 | |
|
16 | 14 15 | sylibr | |
17 | subrgint | |
|
18 | 7 16 17 | sylancr | |
19 | 6 18 | eqeltrd | |