Metamath Proof Explorer


Theorem rgspncl

Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014)

Ref Expression
Hypotheses rgspnval.r φRRing
rgspnval.b φB=BaseR
rgspnval.ss φAB
rgspnval.n φN=RingSpanR
rgspnval.sp φU=NA
Assertion rgspncl φUSubRingR

Proof

Step Hyp Ref Expression
1 rgspnval.r φRRing
2 rgspnval.b φB=BaseR
3 rgspnval.ss φAB
4 rgspnval.n φN=RingSpanR
5 rgspnval.sp φU=NA
6 1 2 3 4 5 rgspnval φU=tSubRingR|At
7 ssrab2 tSubRingR|AtSubRingR
8 eqid BaseR=BaseR
9 8 subrgid RRingBaseRSubRingR
10 1 9 syl φBaseRSubRingR
11 2 10 eqeltrd φBSubRingR
12 sseq2 t=BAtAB
13 12 rspcev BSubRingRABtSubRingRAt
14 11 3 13 syl2anc φtSubRingRAt
15 rabn0 tSubRingR|AttSubRingRAt
16 14 15 sylibr φtSubRingR|At
17 subrgint tSubRingR|AtSubRingRtSubRingR|AttSubRingR|AtSubRingR
18 7 16 17 sylancr φtSubRingR|AtSubRingR
19 6 18 eqeltrd φUSubRingR