Description: The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rgspnval.r | |- ( ph -> R e. Ring ) |
|
rgspnval.b | |- ( ph -> B = ( Base ` R ) ) |
||
rgspnval.ss | |- ( ph -> A C_ B ) |
||
rgspnval.n | |- ( ph -> N = ( RingSpan ` R ) ) |
||
rgspnval.sp | |- ( ph -> U = ( N ` A ) ) |
||
Assertion | rgspnssid | |- ( ph -> A C_ U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgspnval.r | |- ( ph -> R e. Ring ) |
|
2 | rgspnval.b | |- ( ph -> B = ( Base ` R ) ) |
|
3 | rgspnval.ss | |- ( ph -> A C_ B ) |
|
4 | rgspnval.n | |- ( ph -> N = ( RingSpan ` R ) ) |
|
5 | rgspnval.sp | |- ( ph -> U = ( N ` A ) ) |
|
6 | ssintub | |- A C_ |^| { t e. ( SubRing ` R ) | A C_ t } |
|
7 | 1 2 3 4 5 | rgspnval | |- ( ph -> U = |^| { t e. ( SubRing ` R ) | A C_ t } ) |
8 | 6 7 | sseqtrrid | |- ( ph -> A C_ U ) |