Metamath Proof Explorer


Theorem rgspnssid

Description: The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnval.r
|- ( ph -> R e. Ring )
rgspnval.b
|- ( ph -> B = ( Base ` R ) )
rgspnval.ss
|- ( ph -> A C_ B )
rgspnval.n
|- ( ph -> N = ( RingSpan ` R ) )
rgspnval.sp
|- ( ph -> U = ( N ` A ) )
Assertion rgspnssid
|- ( ph -> A C_ U )

Proof

Step Hyp Ref Expression
1 rgspnval.r
 |-  ( ph -> R e. Ring )
2 rgspnval.b
 |-  ( ph -> B = ( Base ` R ) )
3 rgspnval.ss
 |-  ( ph -> A C_ B )
4 rgspnval.n
 |-  ( ph -> N = ( RingSpan ` R ) )
5 rgspnval.sp
 |-  ( ph -> U = ( N ` A ) )
6 ssintub
 |-  A C_ |^| { t e. ( SubRing ` R ) | A C_ t }
7 1 2 3 4 5 rgspnval
 |-  ( ph -> U = |^| { t e. ( SubRing ` R ) | A C_ t } )
8 6 7 sseqtrrid
 |-  ( ph -> A C_ U )