Step |
Hyp |
Ref |
Expression |
1 |
|
cnsrplycl.s |
|- ( ph -> S e. ( SubRing ` CCfld ) ) |
2 |
|
cnsrplycl.p |
|- ( ph -> P e. ( Poly ` C ) ) |
3 |
|
cnsrplycl.x |
|- ( ph -> X e. S ) |
4 |
|
cnsrplycl.c |
|- ( ph -> C C_ S ) |
5 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
6 |
5
|
subrgss |
|- ( S e. ( SubRing ` CCfld ) -> S C_ CC ) |
7 |
1 6
|
syl |
|- ( ph -> S C_ CC ) |
8 |
|
plyss |
|- ( ( C C_ S /\ S C_ CC ) -> ( Poly ` C ) C_ ( Poly ` S ) ) |
9 |
4 7 8
|
syl2anc |
|- ( ph -> ( Poly ` C ) C_ ( Poly ` S ) ) |
10 |
9 2
|
sseldd |
|- ( ph -> P e. ( Poly ` S ) ) |
11 |
7 3
|
sseldd |
|- ( ph -> X e. CC ) |
12 |
|
eqid |
|- ( coeff ` P ) = ( coeff ` P ) |
13 |
|
eqid |
|- ( deg ` P ) = ( deg ` P ) |
14 |
12 13
|
coeid2 |
|- ( ( P e. ( Poly ` S ) /\ X e. CC ) -> ( P ` X ) = sum_ k e. ( 0 ... ( deg ` P ) ) ( ( ( coeff ` P ) ` k ) x. ( X ^ k ) ) ) |
15 |
10 11 14
|
syl2anc |
|- ( ph -> ( P ` X ) = sum_ k e. ( 0 ... ( deg ` P ) ) ( ( ( coeff ` P ) ` k ) x. ( X ^ k ) ) ) |
16 |
|
fzfid |
|- ( ph -> ( 0 ... ( deg ` P ) ) e. Fin ) |
17 |
1
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> S e. ( SubRing ` CCfld ) ) |
18 |
|
subrgsubg |
|- ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) ) |
19 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
20 |
19
|
subg0cl |
|- ( S e. ( SubGrp ` CCfld ) -> 0 e. S ) |
21 |
1 18 20
|
3syl |
|- ( ph -> 0 e. S ) |
22 |
12
|
coef2 |
|- ( ( P e. ( Poly ` S ) /\ 0 e. S ) -> ( coeff ` P ) : NN0 --> S ) |
23 |
10 21 22
|
syl2anc |
|- ( ph -> ( coeff ` P ) : NN0 --> S ) |
24 |
23
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> ( coeff ` P ) : NN0 --> S ) |
25 |
|
elfznn0 |
|- ( k e. ( 0 ... ( deg ` P ) ) -> k e. NN0 ) |
26 |
25
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> k e. NN0 ) |
27 |
24 26
|
ffvelrnd |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> ( ( coeff ` P ) ` k ) e. S ) |
28 |
3
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> X e. S ) |
29 |
17 28 26
|
cnsrexpcl |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> ( X ^ k ) e. S ) |
30 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
31 |
30
|
subrgmcl |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( ( coeff ` P ) ` k ) e. S /\ ( X ^ k ) e. S ) -> ( ( ( coeff ` P ) ` k ) x. ( X ^ k ) ) e. S ) |
32 |
17 27 29 31
|
syl3anc |
|- ( ( ph /\ k e. ( 0 ... ( deg ` P ) ) ) -> ( ( ( coeff ` P ) ` k ) x. ( X ^ k ) ) e. S ) |
33 |
1 16 32
|
fsumcnsrcl |
|- ( ph -> sum_ k e. ( 0 ... ( deg ` P ) ) ( ( ( coeff ` P ) ` k ) x. ( X ^ k ) ) e. S ) |
34 |
15 33
|
eqeltrd |
|- ( ph -> ( P ` X ) e. S ) |