Metamath Proof Explorer


Theorem itgocn

Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion itgocn ( IntgOver ‘ 𝑆 ) ⊆ ℂ

Proof

Step Hyp Ref Expression
1 df-itgo IntgOver = ( 𝑎 ∈ 𝒫 ℂ ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ ( Poly ‘ 𝑎 ) ( ( 𝑐𝑏 ) = 0 ∧ ( ( coeff ‘ 𝑐 ) ‘ ( deg ‘ 𝑐 ) ) = 1 ) } )
2 1 dmmptss dom IntgOver ⊆ 𝒫 ℂ
3 2 sseli ( 𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ )
4 cnex ℂ ∈ V
5 4 elpw2 ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ )
6 itgoval ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑎 ∈ ℂ ∣ ∃ 𝑏 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑏𝑎 ) = 0 ∧ ( ( coeff ‘ 𝑏 ) ‘ ( deg ‘ 𝑏 ) ) = 1 ) } )
7 ssrab2 { 𝑎 ∈ ℂ ∣ ∃ 𝑏 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑏𝑎 ) = 0 ∧ ( ( coeff ‘ 𝑏 ) ‘ ( deg ‘ 𝑏 ) ) = 1 ) } ⊆ ℂ
8 6 7 eqsstrdi ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) ⊆ ℂ )
9 5 8 sylbi ( 𝑆 ∈ 𝒫 ℂ → ( IntgOver ‘ 𝑆 ) ⊆ ℂ )
10 3 9 syl ( 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) ⊆ ℂ )
11 ndmfv ( ¬ 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) = ∅ )
12 0ss ∅ ⊆ ℂ
13 11 12 eqsstrdi ( ¬ 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) ⊆ ℂ )
14 10 13 pm2.61i ( IntgOver ‘ 𝑆 ) ⊆ ℂ