| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-itgo |
⊢ IntgOver = ( 𝑎 ∈ 𝒫 ℂ ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ ( Poly ‘ 𝑎 ) ( ( 𝑐 ‘ 𝑏 ) = 0 ∧ ( ( coeff ‘ 𝑐 ) ‘ ( deg ‘ 𝑐 ) ) = 1 ) } ) |
| 2 |
1
|
dmmptss |
⊢ dom IntgOver ⊆ 𝒫 ℂ |
| 3 |
2
|
sseli |
⊢ ( 𝑆 ∈ dom IntgOver → 𝑆 ∈ 𝒫 ℂ ) |
| 4 |
|
cnex |
⊢ ℂ ∈ V |
| 5 |
4
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
| 6 |
|
itgoval |
⊢ ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) = { 𝑎 ∈ ℂ ∣ ∃ 𝑏 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑏 ‘ 𝑎 ) = 0 ∧ ( ( coeff ‘ 𝑏 ) ‘ ( deg ‘ 𝑏 ) ) = 1 ) } ) |
| 7 |
|
ssrab2 |
⊢ { 𝑎 ∈ ℂ ∣ ∃ 𝑏 ∈ ( Poly ‘ 𝑆 ) ( ( 𝑏 ‘ 𝑎 ) = 0 ∧ ( ( coeff ‘ 𝑏 ) ‘ ( deg ‘ 𝑏 ) ) = 1 ) } ⊆ ℂ |
| 8 |
6 7
|
eqsstrdi |
⊢ ( 𝑆 ⊆ ℂ → ( IntgOver ‘ 𝑆 ) ⊆ ℂ ) |
| 9 |
5 8
|
sylbi |
⊢ ( 𝑆 ∈ 𝒫 ℂ → ( IntgOver ‘ 𝑆 ) ⊆ ℂ ) |
| 10 |
3 9
|
syl |
⊢ ( 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) ⊆ ℂ ) |
| 11 |
|
ndmfv |
⊢ ( ¬ 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) = ∅ ) |
| 12 |
|
0ss |
⊢ ∅ ⊆ ℂ |
| 13 |
11 12
|
eqsstrdi |
⊢ ( ¬ 𝑆 ∈ dom IntgOver → ( IntgOver ‘ 𝑆 ) ⊆ ℂ ) |
| 14 |
10 13
|
pm2.61i |
⊢ ( IntgOver ‘ 𝑆 ) ⊆ ℂ |