| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cleag |
⊢ ≤∠ |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
vb |
⊢ 𝑏 |
| 5 |
3
|
cv |
⊢ 𝑎 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑔 |
| 8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 9 |
|
cmap |
⊢ ↑m |
| 10 |
|
cc0 |
⊢ 0 |
| 11 |
|
cfzo |
⊢ ..^ |
| 12 |
|
c3 |
⊢ 3 |
| 13 |
10 12 11
|
co |
⊢ ( 0 ..^ 3 ) |
| 14 |
8 13 9
|
co |
⊢ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
| 15 |
5 14
|
wcel |
⊢ 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
| 16 |
4
|
cv |
⊢ 𝑏 |
| 17 |
16 14
|
wcel |
⊢ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
| 18 |
15 17
|
wa |
⊢ ( 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) |
| 19 |
|
vx |
⊢ 𝑥 |
| 20 |
19
|
cv |
⊢ 𝑥 |
| 21 |
|
cinag |
⊢ inA |
| 22 |
7 21
|
cfv |
⊢ ( inA ‘ 𝑔 ) |
| 23 |
10 16
|
cfv |
⊢ ( 𝑏 ‘ 0 ) |
| 24 |
|
c1 |
⊢ 1 |
| 25 |
24 16
|
cfv |
⊢ ( 𝑏 ‘ 1 ) |
| 26 |
|
c2 |
⊢ 2 |
| 27 |
26 16
|
cfv |
⊢ ( 𝑏 ‘ 2 ) |
| 28 |
23 25 27
|
cs3 |
⊢ 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 |
| 29 |
20 28 22
|
wbr |
⊢ 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 |
| 30 |
10 5
|
cfv |
⊢ ( 𝑎 ‘ 0 ) |
| 31 |
24 5
|
cfv |
⊢ ( 𝑎 ‘ 1 ) |
| 32 |
26 5
|
cfv |
⊢ ( 𝑎 ‘ 2 ) |
| 33 |
30 31 32
|
cs3 |
⊢ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 |
| 34 |
|
ccgra |
⊢ cgrA |
| 35 |
7 34
|
cfv |
⊢ ( cgrA ‘ 𝑔 ) |
| 36 |
23 25 20
|
cs3 |
⊢ 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 |
| 37 |
33 36 35
|
wbr |
⊢ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 |
| 38 |
29 37
|
wa |
⊢ ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) |
| 39 |
38 19 8
|
wrex |
⊢ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) |
| 40 |
18 39
|
wa |
⊢ ( ( 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) |
| 41 |
40 3 4
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } |
| 42 |
1 2 41
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } ) |
| 43 |
0 42
|
wceq |
⊢ ≤∠ = ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 ∧ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } ) |