| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cleag | ⊢ ≤∠ | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | vb | ⊢ 𝑏 | 
						
							| 5 | 3 | cv | ⊢ 𝑎 | 
						
							| 6 |  | cbs | ⊢ Base | 
						
							| 7 | 1 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 9 |  | cmap | ⊢  ↑m | 
						
							| 10 |  | cc0 | ⊢ 0 | 
						
							| 11 |  | cfzo | ⊢ ..^ | 
						
							| 12 |  | c3 | ⊢ 3 | 
						
							| 13 | 10 12 11 | co | ⊢ ( 0 ..^ 3 ) | 
						
							| 14 | 8 13 9 | co | ⊢ ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 15 | 5 14 | wcel | ⊢ 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 16 | 4 | cv | ⊢ 𝑏 | 
						
							| 17 | 16 14 | wcel | ⊢ 𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 18 | 15 17 | wa | ⊢ ( 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) ) | 
						
							| 19 |  | vx | ⊢ 𝑥 | 
						
							| 20 | 19 | cv | ⊢ 𝑥 | 
						
							| 21 |  | cinag | ⊢ inA | 
						
							| 22 | 7 21 | cfv | ⊢ ( inA ‘ 𝑔 ) | 
						
							| 23 | 10 16 | cfv | ⊢ ( 𝑏 ‘ 0 ) | 
						
							| 24 |  | c1 | ⊢ 1 | 
						
							| 25 | 24 16 | cfv | ⊢ ( 𝑏 ‘ 1 ) | 
						
							| 26 |  | c2 | ⊢ 2 | 
						
							| 27 | 26 16 | cfv | ⊢ ( 𝑏 ‘ 2 ) | 
						
							| 28 | 23 25 27 | cs3 | ⊢ 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 | 
						
							| 29 | 20 28 22 | wbr | ⊢ 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉 | 
						
							| 30 | 10 5 | cfv | ⊢ ( 𝑎 ‘ 0 ) | 
						
							| 31 | 24 5 | cfv | ⊢ ( 𝑎 ‘ 1 ) | 
						
							| 32 | 26 5 | cfv | ⊢ ( 𝑎 ‘ 2 ) | 
						
							| 33 | 30 31 32 | cs3 | ⊢ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 | 
						
							| 34 |  | ccgra | ⊢ cgrA | 
						
							| 35 | 7 34 | cfv | ⊢ ( cgrA ‘ 𝑔 ) | 
						
							| 36 | 23 25 20 | cs3 | ⊢ 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 | 
						
							| 37 | 33 36 35 | wbr | ⊢ 〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 | 
						
							| 38 | 29 37 | wa | ⊢ ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) | 
						
							| 39 | 38 19 8 | wrex | ⊢ ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) | 
						
							| 40 | 18 39 | wa | ⊢ ( ( 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) | 
						
							| 41 | 40 3 4 | copab | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } | 
						
							| 42 | 1 2 41 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } ) | 
						
							| 43 | 0 42 | wceq | ⊢ ≤∠  =  ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( ( Base ‘ 𝑔 )  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  ( Base ‘ 𝑔 ) ( 𝑥 ( inA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) ( 𝑏 ‘ 2 ) ”〉  ∧  〈“ ( 𝑎 ‘ 0 ) ( 𝑎 ‘ 1 ) ( 𝑎 ‘ 2 ) ”〉 ( cgrA ‘ 𝑔 ) 〈“ ( 𝑏 ‘ 0 ) ( 𝑏 ‘ 1 ) 𝑥 ”〉 ) ) } ) |