Metamath Proof Explorer


Definition df-leag

Description: Definition of the geometrical "angle less than" relation. Definition 11.27 of Schwabhauser p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020)

Ref Expression
Assertion df-leag 𝒢=gVab|aBaseg0..^3bBaseg0..^3xBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleag class𝒢
1 vg setvarg
2 cvv classV
3 va setvara
4 vb setvarb
5 3 cv setvara
6 cbs classBase
7 1 cv setvarg
8 7 6 cfv classBaseg
9 cmap class𝑚
10 cc0 class0
11 cfzo class..^
12 c3 class3
13 10 12 11 co class0..^3
14 8 13 9 co classBaseg0..^3
15 5 14 wcel wffaBaseg0..^3
16 4 cv setvarb
17 16 14 wcel wffbBaseg0..^3
18 15 17 wa wffaBaseg0..^3bBaseg0..^3
19 vx setvarx
20 19 cv setvarx
21 cinag class𝒢
22 7 21 cfv class𝒢g
23 10 16 cfv classb0
24 c1 class1
25 24 16 cfv classb1
26 c2 class2
27 26 16 cfv classb2
28 23 25 27 cs3 class⟨“b0b1b2”⟩
29 20 28 22 wbr wffx𝒢g⟨“b0b1b2”⟩
30 10 5 cfv classa0
31 24 5 cfv classa1
32 26 5 cfv classa2
33 30 31 32 cs3 class⟨“a0a1a2”⟩
34 ccgra class𝒢
35 7 34 cfv class𝒢g
36 23 25 20 cs3 class⟨“b0b1x”⟩
37 33 36 35 wbr wff⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
38 29 37 wa wffx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
39 38 19 8 wrex wffxBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
40 18 39 wa wffaBaseg0..^3bBaseg0..^3xBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
41 40 3 4 copab classab|aBaseg0..^3bBaseg0..^3xBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
42 1 2 41 cmpt classgVab|aBaseg0..^3bBaseg0..^3xBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩
43 0 42 wceq wff𝒢=gVab|aBaseg0..^3bBaseg0..^3xBasegx𝒢g⟨“b0b1b2”⟩⟨“a0a1a2”⟩𝒢g⟨“b0b1x”⟩