| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cleag |  |-  leA | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 |  | vb |  |-  b | 
						
							| 5 | 3 | cv |  |-  a | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 1 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Base ` g ) | 
						
							| 9 |  | cmap |  |-  ^m | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 |  | cfzo |  |-  ..^ | 
						
							| 12 |  | c3 |  |-  3 | 
						
							| 13 | 10 12 11 | co |  |-  ( 0 ..^ 3 ) | 
						
							| 14 | 8 13 9 | co |  |-  ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 15 | 5 14 | wcel |  |-  a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 16 | 4 | cv |  |-  b | 
						
							| 17 | 16 14 | wcel |  |-  b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 18 | 15 17 | wa |  |-  ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) | 
						
							| 19 |  | vx |  |-  x | 
						
							| 20 | 19 | cv |  |-  x | 
						
							| 21 |  | cinag |  |-  inA | 
						
							| 22 | 7 21 | cfv |  |-  ( inA ` g ) | 
						
							| 23 | 10 16 | cfv |  |-  ( b ` 0 ) | 
						
							| 24 |  | c1 |  |-  1 | 
						
							| 25 | 24 16 | cfv |  |-  ( b ` 1 ) | 
						
							| 26 |  | c2 |  |-  2 | 
						
							| 27 | 26 16 | cfv |  |-  ( b ` 2 ) | 
						
							| 28 | 23 25 27 | cs3 |  |-  <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> | 
						
							| 29 | 20 28 22 | wbr |  |-  x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> | 
						
							| 30 | 10 5 | cfv |  |-  ( a ` 0 ) | 
						
							| 31 | 24 5 | cfv |  |-  ( a ` 1 ) | 
						
							| 32 | 26 5 | cfv |  |-  ( a ` 2 ) | 
						
							| 33 | 30 31 32 | cs3 |  |-  <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> | 
						
							| 34 |  | ccgra |  |-  cgrA | 
						
							| 35 | 7 34 | cfv |  |-  ( cgrA ` g ) | 
						
							| 36 | 23 25 20 | cs3 |  |-  <" ( b ` 0 ) ( b ` 1 ) x "> | 
						
							| 37 | 33 36 35 | wbr |  |-  <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> | 
						
							| 38 | 29 37 | wa |  |-  ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) | 
						
							| 39 | 38 19 8 | wrex |  |-  E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) | 
						
							| 40 | 18 39 | wa |  |-  ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) | 
						
							| 41 | 40 3 4 | copab |  |-  { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } | 
						
							| 42 | 1 2 41 | cmpt |  |-  ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) | 
						
							| 43 | 0 42 | wceq |  |-  leA = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |