Step |
Hyp |
Ref |
Expression |
0 |
|
cleag |
|- leA |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
vb |
|- b |
5 |
3
|
cv |
|- a |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Base ` g ) |
9 |
|
cmap |
|- ^m |
10 |
|
cc0 |
|- 0 |
11 |
|
cfzo |
|- ..^ |
12 |
|
c3 |
|- 3 |
13 |
10 12 11
|
co |
|- ( 0 ..^ 3 ) |
14 |
8 13 9
|
co |
|- ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
15 |
5 14
|
wcel |
|- a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
16 |
4
|
cv |
|- b |
17 |
16 14
|
wcel |
|- b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
18 |
15 17
|
wa |
|- ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) |
19 |
|
vx |
|- x |
20 |
19
|
cv |
|- x |
21 |
|
cinag |
|- inA |
22 |
7 21
|
cfv |
|- ( inA ` g ) |
23 |
10 16
|
cfv |
|- ( b ` 0 ) |
24 |
|
c1 |
|- 1 |
25 |
24 16
|
cfv |
|- ( b ` 1 ) |
26 |
|
c2 |
|- 2 |
27 |
26 16
|
cfv |
|- ( b ` 2 ) |
28 |
23 25 27
|
cs3 |
|- <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> |
29 |
20 28 22
|
wbr |
|- x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> |
30 |
10 5
|
cfv |
|- ( a ` 0 ) |
31 |
24 5
|
cfv |
|- ( a ` 1 ) |
32 |
26 5
|
cfv |
|- ( a ` 2 ) |
33 |
30 31 32
|
cs3 |
|- <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> |
34 |
|
ccgra |
|- cgrA |
35 |
7 34
|
cfv |
|- ( cgrA ` g ) |
36 |
23 25 20
|
cs3 |
|- <" ( b ` 0 ) ( b ` 1 ) x "> |
37 |
33 36 35
|
wbr |
|- <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> |
38 |
29 37
|
wa |
|- ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) |
39 |
38 19 8
|
wrex |
|- E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) |
40 |
18 39
|
wa |
|- ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) |
41 |
40 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } |
42 |
1 2 41
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
43 |
0 42
|
wceq |
|- leA = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |