| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cleag |
|- leA |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
vb |
|- b |
| 5 |
3
|
cv |
|- a |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- g |
| 8 |
7 6
|
cfv |
|- ( Base ` g ) |
| 9 |
|
cmap |
|- ^m |
| 10 |
|
cc0 |
|- 0 |
| 11 |
|
cfzo |
|- ..^ |
| 12 |
|
c3 |
|- 3 |
| 13 |
10 12 11
|
co |
|- ( 0 ..^ 3 ) |
| 14 |
8 13 9
|
co |
|- ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 15 |
5 14
|
wcel |
|- a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 16 |
4
|
cv |
|- b |
| 17 |
16 14
|
wcel |
|- b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 18 |
15 17
|
wa |
|- ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) |
| 19 |
|
vx |
|- x |
| 20 |
19
|
cv |
|- x |
| 21 |
|
cinag |
|- inA |
| 22 |
7 21
|
cfv |
|- ( inA ` g ) |
| 23 |
10 16
|
cfv |
|- ( b ` 0 ) |
| 24 |
|
c1 |
|- 1 |
| 25 |
24 16
|
cfv |
|- ( b ` 1 ) |
| 26 |
|
c2 |
|- 2 |
| 27 |
26 16
|
cfv |
|- ( b ` 2 ) |
| 28 |
23 25 27
|
cs3 |
|- <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> |
| 29 |
20 28 22
|
wbr |
|- x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> |
| 30 |
10 5
|
cfv |
|- ( a ` 0 ) |
| 31 |
24 5
|
cfv |
|- ( a ` 1 ) |
| 32 |
26 5
|
cfv |
|- ( a ` 2 ) |
| 33 |
30 31 32
|
cs3 |
|- <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> |
| 34 |
|
ccgra |
|- cgrA |
| 35 |
7 34
|
cfv |
|- ( cgrA ` g ) |
| 36 |
23 25 20
|
cs3 |
|- <" ( b ` 0 ) ( b ` 1 ) x "> |
| 37 |
33 36 35
|
wbr |
|- <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> |
| 38 |
29 37
|
wa |
|- ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) |
| 39 |
38 19 8
|
wrex |
|- E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) |
| 40 |
18 39
|
wa |
|- ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) |
| 41 |
40 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } |
| 42 |
1 2 41
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |
| 43 |
0 42
|
wceq |
|- leA = ( g e. _V |-> { <. a , b >. | ( ( a e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) /\ b e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) ) /\ E. x e. ( Base ` g ) ( x ( inA ` g ) <" ( b ` 0 ) ( b ` 1 ) ( b ` 2 ) "> /\ <" ( a ` 0 ) ( a ` 1 ) ( a ` 2 ) "> ( cgrA ` g ) <" ( b ` 0 ) ( b ` 1 ) x "> ) ) } ) |